AD=AO68 742 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2
INVESTIGATING SOFTWARE DEVELOPMENT APPROACHES. (U)

UNCLASSIFIED

Ug 78 V R BASILIr R W REITER AFOSR-??-SIBI

TR=-688 AFOSR=TR=79=0540

T —

o

Y

o i

= & 122
= C

||||| T =

o

2 s

; = = =

MICROCOPY RESOLUTION TEST CH*T
NATIONAL BUREAU OF snuomns-:ses-i#
s , i

0

y ;»f:.

Mﬂ- 'IO 0840

o)
g G/

AA068742

r’E e Drﬂgz)
“: MAY 18 1979 k
- AR

é A

o RN UNIVERSITY OF MARYLAND
o COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND
20742

1 & ‘; 2 @ Approved for public release;
X b i distribution unlimited,

UL LALOLL LIy ‘ . - Y
 ECURTY CLASSIFICATION OF THIS PAGE (When Data Entéred)
e
v READ INSTRUCTIONS
" R PORT DOCUMENTAT'ON PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

8 SRHTR- 75:7154}”

4. "FITLE (and Subtittey = -§. TYPE OF REPORT & PERIOD COVERED

)

&)

¥
oy

INVESTIGATING SOFTWARE DEVELOPMENT APPROACHES , Interin Qct \
\\ l "-._ e AT B .mg.&w'-&»wmss.l m«o*r REPORT ‘lUMBER

7. AUTHORBLBL gt i s 8. GONTRACT OR GRAN.T NUMBER(s)
(/O‘ Victor R IBaflll el Robert w.lRelter, Jr’ AFOSR 77-3181
| 4 e———v————r—. ﬁ o 3

———
i F RGA ATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
il Lk iz " ; AREA & WORK UNIT NUMBERS

H

cz
m

University of Maryland g . = I'—"
Department of Computer Science v s 6110 /é ‘ a3 4‘A2
College Park, Maryland 20742

11. CONTROLLING OFF|CE NAME AND ADDRESS
Air Force Office of Scientific Research/NM /,
Bolling AFB, Washington, DC 20332

" AugwBwmee 78

ER OF PAG 7 N =

114 () L
14. MONITORING AGENCY NAME & ADDRESS; t fr 15. SECURITY CLASS. (of ¢ Tepass)
i
z% o 1 OO UNCLASSIFIED
ﬂ_ et

1Sa. DECLASSIFICATION/DOWNGRADING
- SCHEDULE

" 16. DISTRIBUTION STATEMENT (of this Report)

Approvec for pub ribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by plock number)
analysis of software developmerit, disciplined methodology, programming
terms, experimental study, program measurements, software metrics

20. ABS ACT_(Comhmo on reverse side If necessary and identify by blo'ck number) g i
This paper reports on research comparing various approaches, or

methodologies, for software development. The study focuses on the quanti-
tative analysis of the application of certain methodologies in an experiment
environment, in order to further understand their effects and better demonstrpte
their advantages in a controlled environment. A series of statistical
experiments were conducted comparing programming teams that used a disciplin
methodology (consisting of top-down design, process design language usage,

k ‘ structured programming, code reading, and chief programmer team organization)]—,

: DD \5a%s B L R WLASSIFIED 4‘ A |
*/(J‘/ O o 2 SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter ,}V 1

|

|
|

UL LADOLL LD P P
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) A s

20. Abstract continued.

with programming teams and individual programmers that employed ad hoc
approaches. Specific details of the experimental setting, the investigative
approach (used to plan, execute, and analyze the experiments), and some of
the results of the experiments are discussed.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

|
|
A

Technical Report TR-688 August 1978
SEL=-2 7/ ioia AFOSR-77-3181A

INVESTIGATING SOFTWARE
DEVELOPMENT APPROACHES *#

Victor R. Basili and Robert W. Reiter, Jr.

Department of Computer Science
University of Maryland
College Park, MD 20742

DD
mr—sr'—\r‘\’\ ﬂar_\
\

U MAY 18 1679 |

l
ey TD’
A

AIR FORCE OFTICE OF SCYENTIPIC RESEARGH (AFSC)

NOTICE CF I7': TuiTTAL T0 DD

mi ! . “ by) “wi .

;.'v ’.lg'n',.'. efdorupe U nes tesas reviewed and is
Rreve .l S pablln soleate JAW AFR 190-12
itiir‘vu cent 1wl lm.ted. s
le Ds Hlx'.‘u

Technical Intormation Officer

- il
p—— et B e el

Research supported in part by the Air Force Office of Scientific
Research grant AFOSR-77-318 to the University of Maryland.

Computer time supported 1in part through the facilities of the
Computer Science Center of the University of Maryland. The

material contained in this paper will become part of a dissertation
to be submitted to the Graduate School, University of Maryland,

by Robert W. Reiter, Jr., in partlal fulfl;lment of the requirements

for the Ph.D. degree in Computer Science.
(:) Copyright 1978 by V. R. Basili and R. W. Reiter, Jr.

E——

TR=6ER ii

Abstract:

This paper recorts cn research comparing various approaches, cr
methodologies, for software develogment. The study focuses cr the
quantitative analysis of the application of certain methodologies
in an experimental environment, in order to further understand
their effects and better demonstrate their advantages in a
controlled environment. A series ¢f statistical experiments were
conjucted comparing proccramming teams that usea a disciplinec
methocdolo3gy (consisting of toc-cdown design, process design
lanjuaje usage, structured programming, code reading,y, and chirt
prosrammer team organization) with programming teams and
incivicual programmers that employed ad hoc approaches. Specific
details of the experimental setting, the investigative approach
(used to plan, execute, and analyze the exgeriments), and some ¢

the results of the experiments are discussed.

Key words and Phrases:

analysis of scftware development, cisciplined methodology,
projramming teams, experimental study, program measurements,
software metrics

CR Categories: 4.6

Tabtle of Contents

AcknowledJements ¢« ¢« o ¢ o o o ¢ ¢ o o o ¢ o o o 06 06 0 o o o o v

Secticn

1. Introagucticn e o ® © o © o ©® o © e © 6 o & o & o € & o @ 1
I1%e SﬂeCifiCS e ® © 9 © © o © o © o © o o o o © o © o o o o o 6
UQS'UH’SG(UQ @ @ © & ©® o o o o © o o © ° o © o © o o o 4
Envlronment » @ ® © © o o © o o o © o o o 12
Data Collectlon ana RQUUCt\Oﬂ e & o o o o © o o o o o 12
Programming Aspects and Metrics o« o o o o o s o o o o 17
111 Agproach ® o ® ® o o e o o & o o o o ® o ° o o o © o o @ o
Step 1: Questions cf Interest e © & o © o o o ® o o o 21
Step ¢: Research HypothesSesS « « o o o ¢ o ¢ o o o ¢ o 27
Step = Statistica Model e © o © & o o o © o © o © o 24
Step &: Statistical HypothesSes o o o o ¢ o o o o o o o 2°
Steﬂ e Research fFrameworks e © © o ¢ o o © o © o ° @ gg

Step é: Experlmental 3951gn ® © o © o © o © o © o o @ &
Step T: Collecteu Cata o o o e & o ® o © o o o o o =
Step IZ: Statistical Test Procedure o Tetidgtie M HA o il 120
Step %: Statlgtlc al Results ,® e o o o o o o o o ¢ o P
Step 10: Statistical Conclusions ¢« o« o o ¢ ¢ o ¢ o o o 24
Step 11: Research Interpretations e © o o o o o o o & o
Ive. ODjeCtTVE RESULLS o ¢ o 0.0 o ¢ o o o » o @ 6 & & o o & » 39
Presentation o« o « o # ¢« ¢ « o o o » » 5 o o o o s o & 20
Inpact Evalydtion s v o v v ¢« v ¥ 6 K6 sy s 8w v v &0
A Relaxed Differentiation View o o o ¢ o o o o o o o o &1%
A Dlrectlonless v'eH ® © © o ©6 o © o © o o o o © © o o L°
Incividual nghl1ghts e o o © o o ~ o & o o o o o o o 51
Ve INnterpretive Results e © o ¢ o © @ ® © © © o @ & o o e ot
According to Basic Suppositions . o« o 55
Acczorcing to Programming Aspect Classificat1on . o 6"
VIie. CQ"C(Ud'ﬂj kemarks ® o © e © o © © 6 © & o o o6 o o o o @ 77
"9

! References « o« o o o o o ¢ o © o o o o o o o o o o o o o o o o
Appendix

1« Explanatory Nctes for the Programming Aspects e« o« o o o o 84

e English Statements for the Non=Null Conclusions « ¢« ¢ o o« @9°

Ze Engclish Faraphrase of Relaxed Differentiation Analysis .« 106

4o English Categorization of Directionless Cistinctions . « 107

TR=-6E

é

List of Diagr

ams and Tables

FiSON o ¢ o o o ¢ o o o

s and Conclusions « o«

ranged by outcome o« o o

arranged by outcome . o
L] [] ® L L J L] L] L] L] L] L] &
Location Comparisons .

Dispersion Comparisons

Diagram
Te Approach Schematic o o o o
2.1 Lattice of Possible Directional
Outcomes for Three-way COMpParison « o o o o« o & o
Zec Lattice of Possible Nondirectional
Qutcomes for Three-way Compa
Je Association Chart for Result
Table
1. Programminz ASPectsS e« o o o
2.1 Non-Null Conclusions,
for Location Comparisons, ar
Zel Non=Null Conclusions,
for Dispersion Comparisons,
Je Statistical Conclusions « &
4.1 Relaxed Differentiation for
«c Relaxed Lifferentiation for
. Conclusions for Class I,
Etfort (Job Steps) o o« o o
5¢c Conclusions for Class I;.
Errors (Program Changes .
52 Conclusions for Class III,
Gross Size e o e o ¢ e o o
Se4 Conclusions for Class 1V,
Control-Construct Structure
52 Conclusions for Class V
Data Variable Organ:zat;on
Set Conclusions fcr Class VI,
~Packaging Structure « ¢« o o
Se7 Conclusions for Class VII,
Invocation Organization , .
5S¢ Conclusions for Class VI1lI,
Communication via Parameters
Se% Conclusions for Class IX,

Cormunication via Giobal var

iables o« ¢ ¢ ¢ ¢ o &

iv

£
I
i
¢
I
|
:7

It is a pleasure to acknowleaze cclleagues 0r. John D. Gannon
(University of Yarylanc) and Dre. Herbert E. Dunsmore (Purcdue
University) for their nelpful comments and stimulating
discussions. The authors are indebted to Dre Richard He. Meltzer
(General Electric) and “r. We Douglas 2rooks (i8M Federal Systems)
for their assistance in keepin; the statistical side of the
investigation fair and syuares Mrs. Claire Bacizaluppi is
appreciatea for having expertly typed numerous drafts of this

recort.

e Rl At e

TR-6EEZ Section 1 1

lI. Introguction

In the development of any theory, there are three phases of
validatione First is the logical development of the theory btased
on a set of sound principles. Second is the application of the
theory aﬁd the gathering of evidence that the theory is applicable
in practice. This usually involves some qualitative assessment in
the form pf case studiese The third step is the quantitative
analysis of the application of theory in an experimental
environment in order to further understand its effect and better

dermonstrate its advantages in a controlled environment,

There has been a great deal written about methodologies and
prosramming environments for developing software [Wirth 71; Dahl,
Dijkstra, and Hoare 72, Jackson 75; Brooks 75; Myers 75; Linger,
Millsy, and Wwitt 79]. It is clear that many of these methodologies
are baseog on sound logical principles and their adoption within a
production envircnment has been successful. There have been many
case studies that attempt to validate these theories; projects
have adapted versions of these methods and have reported varying
decgrees of success, i.eey the users feel they got the job done
faster, made less errors, or produced a better product (Baker 7%;
3asili and Turner 75, Daley 77]. Unfortunately, there has been a
minimum of real quantitative evidence that comparatively assesses
any particular methodology [Shneiderman et ale. 77; Myers 78;
Sheppard et al. 78]. This is partially because of the cost and
impracticality of a valid experimental setup within a production

("real-world") environmente.

This leaves cpen the question of whether there is a
measurable benefit derived from various programming methodologies
anc environments with respect to either the developed product or
the development processe Even if the benefits are realy, it is not
clear that they can be quantified and effectively monitored.
Software development is still too much of an art in the aesthtic
or sgontaneous sense. In order to fully understand it, contrcl

"

TR=-63& Secticon I

ity, and adapt it to particular applications anc situations,
software development must cecome more of a science in the
ensineering and calculated sence. What is reauired is more

emgirical stucdy, cdata collection, and experimental analysise.

The purgose of the research reported in this paper is (a) to
quantitatively investijate the effect of methodologies and
programming environments on software cevelopment and (b) to
develop an investigative methodolocy based on scientific
2xgperimentation and tailored to this particular application. It
involves tne reasurement and analysis of both the process and the
grccuct in a manner which is minimally ootrusive (to those
developing the software), very objective, and highly autcmatable,
The goal of the research was to verify the effectiveness of a
particular programming methodology and to identify various
qusntifiable aspects that could cemonstrate such effectiveness.

To this end, 3 controlled experiment was conducted involving
several replicaticons of a specific software development task under
varyin, grogramming environments. For each replication successive
versions of the software under development were entered in an
histcrical data tase which reccrded details of the develorment
process and products A host of measurerments were extracted fror
the cata base and statistically analyzed in order to achieve the
research joals. Some of these measurements were "confirmatory",
as they were planned in advance and expected to show differ2nces
amony the programming environments being investigated, while many

of the measurements were simply “exploratory."

The study involves three distinct groupings of softwuare
vuevelopers: individual programmers, acd hoc three-person
grosraaming teéns. and three-person programmin; teams using a
disciglined methodologye The ingividual programmers and the ad
hoc teams were allowed to cevelop the software in a manner of
their own choosing; this is referred to as an ad hoc approach.
The disciplined methodolosy referred to in this paper consists of
ar intearated set cf software development techniques and team

TR-6EE& Section I 3

organizations which include top-down design, use of a process
design language, structured programming, code reading, and chief

proyrammer teams.

The study examines differences in the expectengcy and the
predictability of software development behavior under the
programming environments represented by these groupse.

The basic premise is that distinctions amon3y the groups exist
both in the progcess and in the product. With respect to the
software development product, it is believed that the disciplined
team should approximate the single individual with regard to
prcduct characteristics (such as number of decisions coded and
glcyal data accessibility) and at the very least lie somewhere
between the single individual and the ad hoc teame. This is
because the disciplinea methodolcogy should help in making the team f
act as a mentally cochesive unit during the design, coding, and
testing phases. With respect to the software cevelopment process,

the disciplined team shoula have advantages over both individuals
anc ad hoc teams, displaying superior performance on cost factors
such as computer usage and number of errors mades This is because
of the discipline itself and because of the ability to use team

memters as a resource for validatione.

] The study”s findings reveal several programming
| characteristics for which statistically significant differences do

exist among the groups. The disciglined teams used fewer computer

runs and apparently made fewer errors during software cevelopment

, than either the individual programmers or the ad hoc teams. The
individual programmers and the disciplined teams toth produced
software with essentially thq same number of decision statements,
tut software procuced by the ad hoc teams contained greater
nuruvers of decision statementss For no characteristic was it
concludec that the disciplined methodology impaired the
effectiveness oM a programming team or diminished the gquality of

the software products.

4

TR

TR-6E2 Section | A

The investijation has been conducted in a laboratory or
prcving-ground fashion, in order to achieve some statistical
significance anJd scintific respectability without sacrificing
prccucticn realism and professional applicability. By scaling
down 3 tyoical zroducticn environment while retaining itz
impcrtant characteristics, the laboratory setting provides for a
reasonable comprcmise bpetween the extremes of
(a) "toy" experiments,

which can afford elaborate exgerimental designs and large

sample sizes but often suffer from a basic task that is

rather unrelated to production situvations or involve a

context from which it is difficult to extrapolate or scale up

(eegey introductory computer course students taking

multiple-choice quizzes tasea on thirty-line programs),
and (b) "production environment' experiments,

which offer a high cegree of groduction realism by definition

but incur prohibitively high costs even for the simplest and

weakest experimental cesigns (i.e., Statistical
experimentation recuires replication, and multiple
cuplication of a nontrivial programming project is clearly
expensive).
The exseriment in this study was conducted within an academic
environment where it was possitle to achieve an adequate
exgerimental design and still simulate key elements of a

grccucticn environmente.

An initial ghase of investigation has been completed and the
corplete results are presented in the remainder of this papere.
Section II gives details pertainin; to the experiment itself.
Section 111 descrites the investigative methodology used to plan,
execute, and analyze the experiment. Sections IV and V present
the experiment”s results, segregated into empirical findings
(resultin: frcm statistical analysis of the measurements) and
intuitive judgements (resulting from interpretation of some of the
emgirical findings), respectively. Section VI contains some
remarks on this initial phase of investigative effort ano a
diccussion of further work planned for the studye.

TR-5&8 Secticn I S

i it o S

It should pe noted that the terms “methodology” and

“methodological” (in reference to software development) are
consistently used throughout this report with a technical meaning

relatead to the concept of a comprehensive inte;rated set of
develogzment technigques as well as team organizations, rather than
to the more common notion of a particular technique or
orcanization in isolation.

S -

die oo

T

I

e

TR-0E5 Secticn I ¢

I1. sgecifics

This secticn descrioes several asgects c¢cf the experiment
itself, namely, the experimental design or setupy the experimental
environment, data collection and reduction (during and subsequent
to the exgceriment), and the programming aspects and associated
metrics (used to quantify the experiment).

Ddesign/Setup

The major facets of the experimental design are the
exgerinental units, the exgerimentel treatment factors, the
experimental treatment factor levels, the experimental variatles
observed, the exgerimental local ccntrol, and the experimental
management of other factaors. (See [Ostle and Mensing 75; Chapter
9] for a thorough presentation of these facets.) An experimental
unit is that unit to which a single treatment (which may be a
comosination of several factor levels) is applied in one
reglication of the basic experiment. 1In this case, the basic
experiment was the accomplishment of a given software develogment
projecty and the experimental unit was the software development
tecm, 3e€sy 3 small sroup of people uhd worked together to develop
the softwares There was a total of 19 such units involved in the

exgeriment.

In most experiments, attention is focused on one or more
incependent variables ana on the behavior of a certain cdependent
variatle(s) as the indepencent variables are oermitted to vary.
These incgegendent variables are known as experimental treatment
factorses This experiment. focusea on two particular facets of
software Jevelopment, (1) size of the development team and (2)
decree of methodological discipline, as the experimental treatment

factorse

"cst experiments involve some cdeliterate differential
variation in the experimental treatment factors. The various

;:f
{
|
i

il e

TR-6EE Section II ?

values or classifications of the factors are known as the levels
of the experimental treatment factorse. In this experiment, two
levels were selected for each factor. Ffor the size factor, the
levels were single individuals and three-person teams. For the
degree~of-discipline factor, the levels were an ad hoc approach

and a disciplined methodology.

The experimental (dependent) variables observed consisted of
12C programming aspects relating to the software product and
cevelopment process. Technically, this created a whole series of
simultaneous univariate experiments, all having the same common
experimental design and all based on the same data sample, with
onc experiment for each programming aspect. The immediate gcal of
an experiment is to learn something about the relationship between
the experimental treatment factor levels and the observed

variables.

Experimental local control refers to the configuration by

which (a) experimental units are obtained, (b)) certain sets of

units ure placed into 3groupsy and (c) these different groups are

sut jectea to certain compinations of experimental factor levelss.

Local control is employed in the design of an experiment in order
to increase the statistical efficiency of the experiment (or
sensitivity/power of the statistical test). Experimental Llocal
control usually incorporates some form(s) of randomization =--a

| basic principle of experimental design-- since it is necessary for
the validity of statistical test procedurese.]

For this experiment, subjects were obtained simply on the

TN T R e TS

basis of course enrollments Since the experiment was completely
emtedded within two academic courses, every svudent in those |

T —

courses automatically particioated in the experiment. Development i
“"teams” were formed among the subjects: in one course, the
stucents were allowed to choose between segregating themselves as
individual programmers or combining with two other classmates as
three-person prcgramming teams; in the other course, the students
were assignecd (by the researchers) into three-gerson teams.

3
_— p |
BRI - TR

i

TR-5EZ Section 11 e

Experimental units were formed and placed into groups in this
manner tecause the two academic courses themselves proviced the
twuc levels of the second experimental treatment factor. This
crccess yielaged three groups of 6, 6, and 7 units, designated Al,
ATy, and DTy respectivelye Each group was exposed to a particular
corbined factor-level treatment according to the following partial
factcrial arrancement: (Al) single incdividuals using an ad hoc
aprroach, (AT) three-person teams using an ad hoc approach, and
(D7) three-person teams using specific state-of-the-art
methcdologiese

The disciplined methodology imposed on teams in group 0T
corsistea of an intesrated set of techniques, including togp down
decign of the prcblem sclution using a Process Design Language
(PLL),y functional expansion, design and code reading,
walk=throughs, and chief programmer and manager teams. These
technigues and orzanizations were taught as an integral part of
the ccurse that the subjects were takinge The course material was
orcanizea around [Linger, Mills, and Witt 79], (Basili and Baker
752y and [Grooks 752 as textbookse Since the subjects were
novices in the methodoloyy, they executed the technigques and
orzanizations to varyinc degrees of thoroughness and were not
always as successful as seasoned users of the methodology woulao

Se.

Specifically, the disciplined methodology prescribed the use
of a POL for expressiny the design of the problem solution. The
design was exgressed in a top-down manner, each level representing
a solution to the problem at a particular lLevel of abstraction and
specifying the functions to te expanded at the next levele. The
PPL consisted of a specific set of structured control ano cata
structures, plus an open-ended designer-definea set of ogeratcrs
anc cperands corresponding to the level of the solution and the
particular application. Desicn and code reading involved the
critical review ¢f each team memter”s PDL or code by at least one
other member of the team. WYWalk=throughs represented a more
formalized presentation of an individual”s work to the other

Sl Bl

TR=-6£% Section 1I1I o

memcers of the team in which the POL or code was explained step by
stere In the chief programmer teams, the chief programmer defired
the tog level solution to the problem in PDL, Jesigned and
imglementea the key code himself, and assigned subtasks to each of
the other two programmers who code read for the chief programmer,
designed or codea subpieces as requested by him, and performed
litrarian activities (i.e.y entering or revising code stored
on-line, making test runs, etc.)e The manager teams were defined
in a similar fashion, except that the manager also acted as
litrarian, writing less ccde and doing more code reading, and
yieldeag much greater responsibility for design and implementation

to the other members of the team.

fach indivicual or team in groups Al and AT was allowed to
develop the software in a manner of their own choosing, which is
referred to in this paper as an ad hoc approach. No methodology
wa3s taught in the course these subjects were taking. Informal
observation by the experimenters confirmed that the approaches
used by the individuals and ad hoc teams were indeed lackino in
Jiscigline and did not utilize the key elements of the disciplined
methodology (ee3ey an indivicdual working alone cannot practice
cocde reacding, and it was evident that the ad hoc teams did not use
a FoL or formally do a top-down design).

There are usually several extraneous factors, other than the
ones identified as experimental treatment factors, which could
influence the behavior being observeds The experimental desigcn
employed three distinct methods to control various extraneous
factcrse Factors were either fixed (artifically or externally
hela constant across all experimental units), oalanced
(artificially or externally distributed as evenly as possible
amcng the experimental units), or randomized (allowed to vary in a
naturally randcm way among the experimental units)e 1In this
experiment, a variety of programming factors which do affect
software development were given conscious consideration as
extraneous variaoles and cocntrolled as follows:

- personal ability/talent of people: randomized

TR-6EE Section 11 1"

(and balanced «ithin disciplined teams)

- project/task/application: fixed

- project sgecifications: fixed

- implementation language: fixed

- calendar scheaule: fixed

- available computer resources: fixed

- available man-kour resources: randomizeda

- available automated tools: fixed
sherever possible, these variables were held constant by
exglicitly treating all experimental units in the same manner.
Two variables, the personal ability of the participants and the
amount of actual time they (as students with other classes and
resgonsibilities) had to devote to the project, could only be
allowed to vary amon3y the groups in what was assumed to be a
random manner. However, information from a questionnaire was used
to palance the personal ability of the participants in the
disciplined teams (only) by first (a) partitioning the group DT
students into three equal-sized categories (high, medium, low)
based on their grades in previous computer courses and their
extracurricular grogramming exgperience, and then (b) assigning
them to teams by randomly selecting one student from each category
to form each team.

Environment

Several particulars of the experimental environment
contripute significantly to the context in which the experiment”s
results must be appraisede These include the time and place the
experiment was conducted, the software development project (or
apeplication) which servea as the task gerformea during the
exreriment, the people who participated as subjects, and the

comguter programming lanjuage in which the software was written.

The experiment was conducted during the Spring 1976 semester,
January throuch May, within the regular academic courses given by
the Department of Computer Science on the College Park campus of
the University of Marylande.

TR-45E8 Section 11 11

Several general characteristics of the project are
noteworthy. The agplication was a compiler, involving string
prccessing and language translation (via scanning, parsing, ccde
seneration, and symbol table management). The scope of the
project excluded both extensive error handling and user
documentation, The project difficulty was slight but
nonnegligible, requiring roughly a two man-month efforte The size
of the resulting system averaged over 1200 Llines of high~level
(structured language) source code. The total task was to design,
imglement, testy, and debug the complete computer software system
given a particular specification. ALl aspects of the project were
fixeo anag uniform for each of the development teams. Each team
worked independently to build its own system, using identical (1)
specifications, (2) computer resources allocated, (3) duration of
calendar time allotted, (4) implementation language, (5) testing
tools, etce

The participants were advanced undergraduate students and
graduate students in the Department of Computer Sciences. None
were novice programmers, all had completed at least four semesters
of projramming course work, several were about to graduate and
take programming jobts in government or industry, and a few even
hac as much as three years” professional programming experience.
9n the whole, the participants might test be cdescribed as
“acdvanced student programmers with a bit of professional
exgerience+."” The experiment was conducted within the framework of
twc comparable advanced elective courses, each with the same
academic prereguisites.s The project and the experimental
treatments were built into the course material and assignments,
anc everyone in the two classes participated in the experiment.
They were aware of being monitored, but had no knowledge of what
was teing observed or whys A reasonable degree of homogeneity
seemed to exist amony the participants with respect to personnel
factors, such as ability, experience, motivation, time/effort
devoted to the project, etce On the whole, they were typically
average in each of these factors «ith natural fluctuations which
aPgeared to be evenly distributed amony the experimental groups in

TR-¢E8 Section Il 12

a rancdom fashion. Based upon pre-experiment qualitative judgment,
all subjects shared a similar background with respect to team
pregraaming and the disciplined methodology. However, groups Al
ans AT (the individuals anoc ad hoc teams) seemed to have had a .
slight eaje over jroup CT (the disciplined teams) with respect to -
seneral grogramming ability and formal training in the application
areae

The implementation language was the high-level,

i non-t lock=-structured, structured-programming language SIMPL-T

: {Basili ana Turner 76). This language was designed ana developed
at the University of Maryland where it is tauoht and useo
extensively in regular Department of Computer Science courses. It
is characterized by a very simple and efficient run-time
environment. SIMPL-T contains the following control constructs:

L sequence, ifthenelse, whiledo, case, and exits from loops (but no
: gotos)s The language adheres to a philosophy ot "strong data

tyzing™ and all variables must be explicitly cdeclared. It
b prcvides the programmer =sith both automatic recursion and
5 string-rcrocessing cagabilities similar to PL/1.

£ata Collection and Reduction

! Due to the partially exploratory nature of the experiment in
? | terms of differences to oe discovered in the project and prccess,
1 2s much information was collected as could be done in an
f ! efficient, effectivey, and unobtrusive manner. A variety of
information sources was useds Individual questionnaires supplied
i the personal tackground and programming experience of each
; garticipantes Private team interviews ano open-class team repcrts
yielceu information regarding individual performance on the
projects Run Logs and comguter account billing reports gave a
record of the computer activity dur’pg the project. Special
mocule compilation and program execution processors (invoked
on-Line via very slight changes to the regular command languacge)
? createc an historical gata base of source code and test data
accumulated throughout the project development.

TR-6E8 Section 11 17

The data base providead the principal source of information
analyzed in the current investigation and other information
sources have been utilized only in an auxiliary manner (if at
all)e Thus, data collection for the experiments themselves was
automatecd on-line, with essentially no interference to the
programmer”s normal pattern of actions during computer (terminal)
sessions. The final products were isolated from theidata tase and
measured for various syntactic and organizational aspects of the
finished product source code. Effort and cost data were also
extracted from the data base. The inputs to the analysis, in the
form of scores for the various programming aspects, reflect the
quantitatively measured character of the product and effort of the
processe Much of the data reduction was done automatically within
a specially instrumented compiler. Some was done manually (e.gey
examining characteristics across modules). Due to the underlying
collection and reduction mechanism, which was uniformally applied
to all experimental units, the data used in the analysis has the
characteristics of objectivity, uniformity, and quantitativeness

.and is measured on an interval scale of measurement [(Conover 71;

Ppe 65-671].

Prosramming Aspects and Metrics

The dependent variables studied in this experiment are called
prcsramming aspects. They represent specific isolatable and
observable features of the programming phenomenon which are highly
automatable (i.esy, they could be extracted or computed directly
on-Line from information readily obtainable from operating systems
and ccmpilers)., The variables fall into two categories: process
aspects and product aspects. Process aspects are relatea to
characteristics of the development process itself, in particular,
the cost and reguired effort as reflected in the number of
computer job steps (or runs) and the amount of textual revisicn of
source code during development, Product aspects are related to
the syntactic content and organization of the symbolic source code
which represents the complete final product that was developed.
Examples are number of Llines, frequency of particular statement

——

s

- o . Sias

TR-6E8 Section I1I 14

tyres, average size of data variables” scope, etc. For each
aspect there exists an associated metric, a specific algorithm
which ultimately defines that asgect and by which it is measured.

Tne particular programmin; aspects examined in this
investigation are lListed in Table 1. They appear grouped by
b f category, indented qualifying gchrases specify particular variants
of certain general aspects. When referring in this paper to an
incividual (sub)aspect, a concatenation of the heading line with
the qualifying phrases (separatec by \ symbols) is used; for
exemple, COMPUTER JOB STEZPS\MODULE COMPILATIONS\UNIQUE denotes the
numrzer cf COMPUTER JOB STEPS that were MODULE COMPILATIONS in
; «hich the source code was UNIQUE from all other compiled versicnse.
Explanatory notes (keyed to the List in Table 1) about the
prozramming aspects are given in Agpendix 1, complete with
definitions for the nontrivial or unfamiliar metrics. Technical
mezninzs for various system—= or language-depenaent terms used in

the paper (esGey module, segment, intrinsic, entry) also aprear
there. Some of these words mean different things to different
veopley, and the reader is cautioned against drawing inferences not
Sasec on this paper”s definitions,

The complete set of programming aspects may be partitioned
into two subsets based upon the motivation for their inclusion in
the studye Several aspects --hereafter denoted as

collecting and extracting, the data, because intuition suggested
that they would serve «ell as quantitative indicators of important
quelitative characteristics of the sofware development phencmenon.

It was pregicted a priori that these “confirmatory" aspects wculd
verify the study”s basic premises regarding the programming
metnodolozies being investigated in the experiments The remaining
aspects --hereafter denotea as "exploratory"-- were considered
mainly because they could be collected and extracted cheaply (even
as a natural by-groduct sometimes) along with the "confirmatory"
aspectse There was lLittle serious expectation that these
“exploratory" aspects woulc be useful indicators of differences

s - —

————

TR-688 Table 1 15

Table 1. Programming Asgects

NeEo The asterisks to the left mark "confirmatcry” aspects;
exploratory' aspects are unmarked. The parenthesized numbers
to the right refer to the explanatory notes in Appendix 1.

ARARRRARRN AR ARARBARAIRANRAAR AP AANARSAAANSI AR AN
ceve lopment process aspects :

e e P T T T P F T T P P P T T TITT™

COMPUT:R JO
¥0oD

»> %%
OG~=CC
mooZr
rFre>»mem
r{220
ANSS LN =
A4 e N Nt N Nt Nt N NS

o >

—E e e e rr r r e e e c e - —--— —— e - - - -
R XX - 2 - 2 2 2t 2 2 2 2 2 2 F 2 2 2 R 2 2 - 2 2 2 & 2 X & 2 2

* PROGRAM CHANGES
RAN RN AN AR AR AN AAANARRA A AARR R AR SRR AN
final product aspects :

-+ 3 & 3 & &+ & F &+ 4 & & &5 55 3+ 2358 & 525+ F 5=+

* MODULES (10)

T P P T T T e P P T T e T T e T
2 2 2R 2 R R R k& 2 &2

* SEGMENTS (11)

~~ Lalalal flalalatatay N

O OO

>
<
m
kR
3>
D
™
m
(T’
K
m
<
-
7
hJ
m
0
=
o
o
c
-
m

STATEMENT TYPE COUNTS 3

T _—_h

* %% ¥
AN T Y 4o
VxI>P>"NN
Dran

lala Tl
Yy
E P ¥
-t N ot

v
-
>
.~
m
=
l‘"
-
<
0
m
°
m
o
(2]
m
2
-
>
[(n]
m
w
e

LR 2B IR

R ik o i e S e B o SR B LS £o

* AV:’AGE STATEMENTS PER SEG“ENT

* AVERAGE STATEMENT NESTING LEVEL

* DECISIONS
==s=zzz===2s=zszsTI=F=TT===T==ST=========s
FUNCTION CALLS

NONINTRINSIC

INTRINSIC

SSS=S=SSSS===Z=S=ZsSS=S=sSsS=SSSsSS==sSRSEST=TTS=T===s=

Pl e el ol o e e e leelalalalale ol alelalolalalalale ol R o R e T o la la SR Vo Vo !
NN N VN NN sacdedad NNINNNN = cdadad «d b = cdeded cdaded
WL N O UV S LIN=OO0ONO SN =SOOVONG N & W =N =
NN " N P IS I I NSNS SIS IS SIS I IS N D P IS NININS

~ NN
YN
s
N

16

TR-688 Table 1 continued

PNINONONINN ~ ”~~
EC RN EX TX X X 4 ~ X §
P X LU LN SN BN 4 ~ ~
N W Nt ot N A ~
lalal lalatlalaYatlaYalatal lalatal o YalaT Vo oY [alala) ”~ lalalalalalalalaYalalalalalal ol lalalalalaYalatalalal o Vo ¥ Vot o) lalat Y ¥ o lalalal
00 O=MMeEMMMNMM O=MMEMNMMIM e (N MMM OOM MV TNNNNMNMOOM WO OMM
NN N NNENONINN MeENINENININN Mo M MMM MM NS DM PIMMIIM MMM NS M FY) - My
A A4 N b NI NS Nl NP N P Nt N ot o o S) P ot <~ Nt N N N Nl N P P P i D N o N N N N N o NP b D P D P I NP N Nt et S
" "] { "ot]])
1] "] \ "]]] -
"] [}] "o ' [} 2
"] - [} w- .4)] § w
(1] " [-4 [n]]] (3
" " | w (4 [} (]] P w v
n " [3 "w n o\] [Iw
[}] (U} [2 ho | e 1D 1w
(]} (] "Pw [T no\ I ta t
" " (7} w [T | (%) 10 |
" " (] twn no I w [JE = | w
"] 1~] "] 19 (] Ia
"no-n () |~ "o e | < I x (]
noz=zn 12 (=) n I f - P w (7]
" we [I w " In "2 o Iw
"o oaxu 4 !] |- hw] | J
nown | o | ' J [} (-4 o I»n I ©
"noo=n | < | < [=1 | "w 1<
hn an [*) 1o n 1o fw [[]
"o |~ [n 1o Ia [Js: } |
“ [}] n]] | < la
"] | | x " tw o a w a a I - i>
[4 (S] (%] hw o (&) Iw " a w w w 1o w w w 1o)
nown - = Ia = - a " 1o QA Aarm 9 1O QA Ore O 1< 13
n oan (%] w] (7] (%] (] " (%) wh ww o Z 1o W ww o Z 1> [
] [20 VL 0 22U VLY v n) N o WX W n - e W@ W o
n o uvn el I L L T - T R T P - nwni waoarweao—~ uwe | waruwoa~ wwe | J fo
n 2 XN NV | O TV TV | O "Wl w ~NMOX™MOWW =Dw) w MO®=OWW =D | < al a
nown FZWZ20 1 EPW-Z20O0 - Wi OFra¥YrJdwadu. | o J QAFrOE - JIW W | wlov
H YHWANZZEZHAA | 2224 | 2Ol >O02202uagEdwdl) >O0Z2Z02wdaaAESWII O »axdl =
H ONZO0™MardV) KOMEDHACVN | SOl EDWEFIrHOMIC>dCla X2 DWEDIDONEKE>aC) J xwwloO
N EHNOHMZFAZFEZ | ONZFEAZEREZ | OOl - —J- 2 axowx O)= 2 (-} 1.4 QIWY el 2
" N=-OZWOZZ—| OFOZWOZZ~| oWl | x<2 [} O Ja ClasZ o o2 J« ol >Zual
H WHFUOZMOZHNHNE | DUZHMOZH~NE] DUl <t <«Ow 4 FEDuva - Tnw 2 £Douva S wew—=o lw
HVOH <= o Zr-\22 o -1 2200301 >0 2 | >0 = o-2ax il Vv
NZLNOD e OZ1 =D @ (St A I P X2 T R R | o | I | o <2002 <
nhwe Ouw a = W 0. Ze wOhllea |l gV =z | <O & tlouwzrdla
nwn> (L} [T 0= - " w 1w
no>u 2z > t> Nt <) < "> ">
[N s SN | < | < natl o o | < | <
-« - x * * * *

17

TR-688 Table 1 continued

[alala) [alalalatlaYatalat ol alala Tt Yot Y oX ol lalalalal VYA Y V¥ N lalalalalale)

OO0 OTVNINITNNNN OITNNITINNINING. OOTNIN IV = NIMM NN

MMM S MMMMMMININY) MMM MMM TSI T

N Nt o Nt) b St P b Nt F S b N P T e o b) P b P N ol o N
«
" (1] (]]) x
" " (] I " «
1] "] Iw h *
" (1] (] 10 h =
0 ee "] | < " «
([} " (] fr- L] *
n»n " [] & ([} *
"w " [7] Iw " *
no [} lx [K*] 0o *
< (X7 (N [- 4 n L 3
([N "e | < Pw non *
nz ([|a Ia ho =
" w <<] h2 L
o na w [T "o ®
" " o "> hao *
"w nw | < (N h *
"na nY I»n 1 - 2] *
" < 19 | < o ®
"w no»n) 1Jd “" we
na o w W n< (U R
([2 ([} - | x e <%
ne na m [} h -
" " < - tw ho « ax
"w "o I 1O " 22— W
" " o a »n o o | < (=) o hen OZ L«
"< no w w o w w I»n w w NY - X«
X7} N Or¢ DO O o Oord 19D o om hw o we
nw ' W wWw o W we ay W we alun uZ asx
N W ey bt U A b e WA MM =N W s 2w &«
Na., VI Y wor>wodaml Jd wor>uwuparl d war>rwoamild Dawwe
" ZNC ~HOXMNOWW € HOX™NOWWK | & ~MOE™OWL I wWWwJI>«x
N Wil OXErFAQE IO QXZFAQAE--I 1D QOEFrAQOEHIOJIJDOM~E
NWWXHO>0Z202ua |l O>0ZZ0Zwo0 il O>O0ZZO0Zwa 0D k&
NHFEDWH JEEDWEDNO | JEEDWEDO | JIEEDWIED~O Il DN
Nwdw il O P4 ag | O+ -4 o | V- -4 OF WOk Ve
NESWN o= Q OZ1 o2 (=] OZ(l 2 o o2 s Ow «
Na >0 nuww Z 2010w Z EFDIvw -4 OV« acse
"o " w I w Iw "W x
"< nwn 1 1o "nw «
"a 0~ [)~ "~ L]
«

* * L

T ————

- g——

TR-688 Section 11 19

amcng the groups; but they were included in the study with the
intent of observing as many aspects as possible on the off chance
of discovering any unexpected tendency or difference. The
“cenfirrmatory" programming aspects are identified by being flagoed
in Table 1 with an asterisk; the "explorat .- y" programming asrects
are unflagged.

This distinction between “confirmatory"” and “exploratory"™ has
important consequences for the evaluation of the study”’s
exgeriments. For the "“confirmatory'"™ aspects, the individual
exgeriments are actually confirmatory, since it was hypothesized
that they would indicate certain differences among the groups,
prior to conducting the experiment and extracting their scores.
But for the "exploratory" aspectsy, whose scores were extracted
withcut any preconcieved hypotheses, the experiments are purely
exploratorye Thus, this study combines elements of both
confirmatory and exploratory data analysis within one common
experimental setting [(Tukey 69]. This distinction does not
however influence the method by which the experiments themselves

were consuctede.

It should be noted that a large percentace of the product
asgects fall into the "exgploratory™ category. A secondary
motivation for their consiaeration is that the product aspects, as
a unit, represent a fairly extensive taxonomy of the surface
features of software. The idea that important software qualities
(eey ey "complexity”™) could be measured by counting such surface
features has generally been disregarded by reasearchers as too
simplistic (esgey [Mills 73; pe 232]J)e A resolve to study these
surface features empirically, to see if something might turn up,
before rejecting the underlying icea, was partially responsible

for their inclusion in the stuuye

In order to avoid any inadvertant deception or
misunderstanding, the following issue of redundancy must be stated
and properly appreciated. There exist several instances of
Juglicate programming aspects; that is, certain lLogically unique

TR-6838 Section 11 10

aspects appear a second time with another name, in order to
provide alternative views of the same metric and to achieve a
certain degree of completeness within a set of related aspects.
For example, the FUNCTICN CALLS aspect and the STATEMENT TYPE
COUNTS\(PROC)CALL aspect are listed (and categorized appropriately)
from the viewpoint of the various type of constructs that céuprise
the implementation languages 3ut the very same metrics can be
considered from the unifying viewpoint of the various subtype
frequencies for segment invocations, and thus it is desirable to
include the duplicate aspects INVOCATIONS\FUNCTIONS and
INVOCATIONS\PROCEDURES as part of the natural categorization of
INVOCATIGCNS. Within the 137 programming aspects listed in Table
1, there are seven pairs of duplicate aspects (identified in the
notes of Appendix 1), leaving 130 nonredundant aspects examined in
the study. By definition, the data scores obtained for any pair
of duplicate aspects will be indentical, and thus the same
statistical conclusions will be reached for both aspects. This
must be kept'in4mind'uﬁen evaldating the results of the
experiments in terms of their statistical impacte.

bt e et i e e pe i

bl

Fr

e o

T

O s

e

T

SE—

3

TR=682 Section 111 20

This section describes the steps in an investigative
methcdolo)y developed for the particular problem of comparing
softuware development efforts under various conditions., It was
used to yuide the planning, execution, and analysis of the
exgerimental investigations whose results are reported in this

pagere

The investijyative methodology can be characterized as an
emgirical study based on the "construction® paradigm in which
multiple subjects are closely monitored during actual “production®
experiences, each subject performing the same task, with
controlled variation in specific variabless It uses scientific
exgerimentation and statistical analysis based on a
"differentiation among groups by aspects® paradigm in which
cossitle differences among the groups, as indicated by differences
in certain quantitatively measured aspects of the observed
chenomenon, are the target of the analysise This use of
"difference aiscrimination”™ as the analytical technique dictates a
model of homogeneity hyrothesis testing that influences nearly

every element of the methodologye.

Note that there are other analysis technigues that could have
been used; e«.Ge.y estimation of magnitude of difference,
correlations between various aspects (across all combinations of
factor-levels), multivariate analysis (rather than multiple
univariate analyses in parallel), and factor analysis (breakdcwun
of variance) among the various aspects. These are useful
techniyues anc may be used in later phases of this researche
However, difference Jdiscrimination represents a “first-cut" prote,
which hopefully'uil(yield some information to help guide more

refined probes in the futuree.

Although the methodology is built around an empirical study
anc utilizes scientific experimentation, the actual execution of

¥

o
3
£ N

AR

Rl

TR-6E8 Section III 21

the experiments and collection of cata play a small role in the
overall methodology when compared to the planning and analysis
phases. This is readily apparent from the Approach Schematic,
Diagram 1, which charts some of the relationships among the
various elements (or steps) of the investigative methodology.

The remainder of this chapter outlines and briefly describes
the overall approach by defining each step in jeneral and
discussing how the approach was applied in the research effort at
hands Note that Sections IV and V give the specifics of the last
two steps of the approach --statistical conclusions and research
interpretations-- as pertaining to the current experimental
investigation.

Step 1: Questions of Interest

Several questions of interest were initiated and refined so
that answers could be given in the form of statistical conclusions
and research interpretations. Questions were formulated on the
basis of several areas of interest: (1) software development
rather than software maintenance, (2) a particular set of
prograaming factors, (3) gquantitatively measurable aspects of the
crocess and the product, (4) two particular lLevels for each of the
grogramming factors, (5) the particular type of analysis technique
mentioned above, and (6) intuitive considerations and suspicions
leaging to choice of a particular three-way grouping of the
factor-level combinationse.

The final questions of interest culminated in the form
“purin, software development, what comparisons cetween the effects
of the three factor-lLevel combinations (a) single individuals, (b)
ad hoc teams, and (c) disciplined teams appear as differences in
the various quantitatively measurable aspects of the software
development process and product? Furthermore, what kind of
differences are exhibited and what is the direction of these
differences?"

22

e e e s e e

SISATUNY

e s s e s .

° NOILND3X3

- v v
3 vO.qu 2330 ‘30804 s 00940 o
& suorjejaidiajur Muuu SUOYSN[OU0d 22V"° ' s3jnsaa avV = ejep .
s ._o..noanu.. fesrisiyels < [eo13IsyIeys ~ 2 Pa323[102 .
3 2 / : N .
1) . AVOO%O
/ \ .—%] s
” \ / = ~ : o o :
£ -
o / ~ ’ NOILND3X3 *
. \° ONINNVId °
‘ \ / < ubisap .
. A / sainpasoid 3833 % 1ejuawy 13dxa .
iy Tedr3Isyjeqs : >
L \ / A 3 < N N .
* SISATVNV \ ! ’ s iR) .
. - - - - - . . . - - - . . - L . - - o - L . . a¢ - 4
* ONINNVIA L ¢ P T N e
2y »
; b oo z et 3 i
. syiomawe1y _ 2 sagayjodAy T S SR SN S 12pou .
: yoieasail ﬁA 1eo13siiels T T _T - teorasmiess .
; S N B e i A .
‘ 32 o n
o4 = 0»‘%0‘0 Goa—..-oo .
; .Q"O N ~ - 064 :,
. ? AN ~ .
. N sasayjodAy .
. > 9 yoieasai .
. ~ AN 303 *
. N d.vn.ﬁn‘ .
=y .
. < .
‘ N . .
- . I1s3123uy jo 013 .
e suoy3isanb -
. . AN\ ”
. .
o - o1V’ .
@ - L '
- o e e @ S T L e N TR e R & %N e w iR e W N e e st 8w s vl Sfe K s B ik
a
o130WayYds yoeoaddy -y weabeiqg
-2}
0
O
'
[~ 4
=
T S— -

TR=-6EE Section 111 2%

Step 2: Research Hypotheses

Since the investijative methodology involves hypothesis
testing, it is necessary to have fairly precise statements, called
research hypotheses, which are to be either supported or refuted
by the evidence. The second step in the approach was to formulate
these research hypotheses, disjoint pairs desigjnated null and
alternative, from the questions of interest.

A precise meaning was given to the notion “what kind of
difference." The investigation considered both (a) differences in
central tendency or average value, and (b) differences in
variability around the central tendency, of observed values of the
quantifiable programming aspects. It should be noted that this
decision to examine both location and dispersion comparisons among
the experimental groups brought a pervasive duality to the entire
investigation (i.e.y two sets of statistical tests, two sets of
statistical results, two sets of conclusions, etc. --always in
parallel and independent of each other--), since it addresses both

experimental treatmentse.

Some vagueness was removed regarding the size of the
particular programming task by making explicit the implicit
restriction that completion of the task not be beyond the
cagability of a single programmer working alone for a reasonable
period of time. Additionally, a lLlarge set of programming aspects
were specified; they are discussed in Section 11, Specifics. For
each programming aspect there were similar questions of interest,
similar research hypotheses and similar experiments conducted in

parallel.

The schema for the research hypotheses may be stated as "In
the context of a one-person do-able software development project,
there < is not | is > a difference in the < location |
dispersion > of the measurements on programming aspect < X >
between individualsv(AI). ad héc teams (AT), and disciplined teams

TR-6E2 Section 1Il 264

(PT)e" For each programming aspect “X° in the set under
consideration, this schema generates two pairs of nondirectional
research hypotheses, depending ugon the selection of “is not” or
“is” corresponcing to the null and alternative hypotheses, and the
selection of “location” or “dispersion” corresponding to the type

of cifference.

Step 3: Statisgical Model

The choice of a statistical model makes explicit various
assumptions regardiny the experimental design, such as the
derendent variabtles observed, the distributicns of the underlying
ropulations, etce. 3ecause the stucy involves a
horogeneity-of-gopulations problem with shift and spread
alternatives, the multi-sample mcdel used here requires the
following criteria: inuegendent populations, independent and
rancom sampling within each population, and interval scale of
measurement [Conover 71; ppe £5-67) for each programming asoecte.
Althousgk random sampling was not explicitly achieved in this study
by rigorous sampling procecures, it was nonetheless assumed on the
tasis of the apparent representativeness of the subject pool ancd
the lack of obvious reasons to doutt otherwises Due to the srall
sample sizes, the unknown shape of the underlyin3 distributions,
anc the gartially exploratory nature of the stuay, a nonparametric

statistical model was used.

whenever statistics is employed to “prove' that scme
systematic effect -~in tnis case, a difference among the groups--
exists, it is important to measure the risk of errores This is
usually done by reporting a significance level a [Conover 71; pe.
792, which represents the probability of cdeciding that a
systematic effect exists when in fact it does note In the model,
the hyccthesis testing for each programming aspect was regarded as
a separate incdependent experiment. As a consequence of this
chcice, the siynigicance level is controlled ano reported
experimentwise (is€ey On a per aspect basis)e while the
assumption of inderendence between such experiments is not

S—

TR=4EE Section 11l ’ 25

entirely supportable, this procedure is valid as long as

. _..,.A._,..A.ALM“_.H&.__AA_J

conclusions that‘couple one or more of these programming aspects
are avoided or properly qualifieds: In this study, statements
regarding intecrelationships among aspects are made only within
the interpretations in Section V.

Step 4: Statistical Hypotheses

The research hypotheses must be translated into statistically
tractacle form, called statistical hypotheses. A corresgcondence,
joverened by the statistical model, exists between :
application-oriented notions in the research hypotheses (e.g.,
tyrical performance of a3 programming team under the disciplined
methodology) and mathematical notions in the statistical
hycotheses (e.ge., expected value of a random variable defined over
the population from which the disciplined teams are a
representative sample). Generally speaking, only certain
mathematical statements involving pairs of populations are
statistically tractable, in the sense that standard statistical
grocedures are applicables Statements that are not directly
tractable may te broken down into tractable (sub)components whose
results are properly recomcined after having been decided
individually.

In this study, the research hypotheses are concerned with
directional differences among three programming environmentse.
Since the corresponding mathematical statements are not directly :
tractaole, they were broken down into the set of seven statistical
hypotheses pairs shown belowe The hypotheses pair

null: AI = AT = DT alternative: <=(A]l = AT = DT)
adcresses the existence of an overall difference among the groupse.

Howevery, due to the weak nondirectional alternative, it cannot

indicate which groups are different or in what direction a
gifference Lliess Standard statistical practice prescribes that a
successful test for overall difference among three or more groucs
be fcllowed by tests for pairwise differences. The hypotheses
pairs

L

TR=622 Section I1II 26
null: Al = AT alternative: Al # AT or
AI <€ AT or AT < Al
null: AT = DT alternative: AT # DT or
AT <€ DT or DT < AT
null: Al = DT alternative: Al # 0T or
Al € DT or DT < Al

adcress the existence anc direction of pairwise differences
tetween groups. The results of these pairwise comparisions were
used to explicate the overall comparison. Data collected for a
set of experiments may often be legitimately reused to "simulate"
other closely related experiments, by combining certain samples
together and ignoring the original distinction(s) between them,

It is meaningful, in the context of this study”s experimental
design, to compare any two groups pooled against the third since
(1) Al and AT are both undisciglined, while DT is disciplined; (2)
AT and DT are both teams, and Al is individuals; and (3) under the
assumption that disciplinea teams behave like individuals =-which
is part of the study”s basic premise--, DT and Al can be pooled
anc compared with AT acting as a control group. The hypotheses

pairs
null: AI+AT = DT alternative: AI+AT # DT or
AI+AT < DT or DT < AI+AT
null: AT+DT = Al alternative: AT+0T # Al or
AT+DT < Al or Al < AT+DT
null: AI+DT = AT alternative: AI+DT # AT or
AI+DT < AT or AT < AI+DT

adcress the existence and cirection of such pooled differences.
The results of these pocled comparisons were used to corrobate the

overall ano paireise comgarisonse.

Thus, for any particular programming aspect, the research
hypotheses pair corresponds to seven different pairs (null and
alternative) of scientific hypotheses. The results of testing
each set of seven hypotheses must te abstracted and organized irto
one statistical conclusion using the first research framework
discussed in the next step.

Step °: Research Framewcrks

The research frameworks provide the necessary organizational
basis for abstracting and conceptualizing the massive yolume of
stotistical hypotheses (anc statistical results that follow) into

‘a
i
3

- e et

TR-688

Section 111

2’

a smaller and more intellectually manajeable set of conclusions.

Three separate research frameworks have been chosen:

(1) the

framework of possible overall comparison outcomes for a given

prosramming aspecty, (2) the framework of dependencies and

intuitive relationships
and (3) the

considered,

exgected effects of the

outcomes for the entire

set of programming aspects.

among the various programming aspects
framework of tasic suppositions regarding
expcerimental treatments on the comparison

The first

framework is employed in the statistical conclusions step because

it can be applied in a statistically tractable manner, while the

remaining two frameworks are reserved for employment in the

research interpretations step since they are not statistically

tractable and involve subjective judgement.

Since a finite set of three different programming

environments (Al, AT, and DT) are being compared,

there exists the

follecwing finite set of thirteen possible overall comparison

outcomes_for.

Al
Al
AT
AT
DT
oT
Al

<

A

<

AT
AT
DT
0T
Al
Al
AT

each asgect considered:
= DT

= DT
}'AI # AT

= pT

< Al

= Al
AT # DT = Al

< AT
= AT

= AT
DT # Al
< DT

Al
Al
AT
AT
0T
0T

A A A A A A

AT
BT
DT
AL
Al
AT

<

A A A A A

oT)
AT
AT
oT
AT

> Al # AT # DT

Al
4

There is a hierarchical lattice of increasing separation and

directionality among these possible overall comparison outcomes as

shcwn in Diagram 2.

These thirteen possible.overall comparison

outcomes comprise the first research framework and may be viewed

as providing a complete "answer space" for the gquestions of

interest.

It is clear that any consistent set of two-way

comparisons (such as represented in the statistical hypotheses or

statistical results) may be associated with a unique one of these

three-way comparisons.

This framework

is the basis for organizing

and condensing the seven statistical results into one statistical

conclusion for each programming asgect considerede.

TR-688 Diagram 2

Diagram 2.1 Lattice of Possible Directional Outcomes for Three-way Comparison

o: AIKATSDT AISDTCAT AT<DT<AL AT<AICDT

DTCAICAT DTCATCAI ‘;

S e meeemcem crmmr e e r s e mm e e e s e meme e me e s emecccmasee’

N.B. The circles indicate which directional outcomes correspond to the same nondirectional outcome, 3.

Diagram 2.2 Lattice of Possible Nondirectional Cutcomes for Three-way Comparison

Al = AT = DT

Al ¥ AT = DT AT ¢¥ DT = Al

Al ¢ AT ¢ DT

DT ¢ Al = AT

28

(partially
differentiated)

(completely
differentiated)

(partially
differentiated)

(completely
differentiated)

TR-6E8 Section 111 29

Since a large set of interrelated programming aspects are
teing examined, it would be desirable to summarize many of the »
“per asrect" hypotheses and results into statements which refer to !
several aspects simultaneously. For example, average number of
statements per segment is one aspect cdirectly aegcendent on two
other aspects: number of segments and number of statements. Cther
interrelationships are more intuitive, less tractable, or only
suspected, for example, the "trade-off" between global variables
anc formal parameters. A simple ctassifi;ation of the programming
aspects into groups'of intuitively related aspects at least
prcvides a framework for joint}y interpreting thg corresponding
statistical conclusions in Light of the underlying issues by which
the aspects themselves are relatéd. The programming aspects
considered in this study were classified according to a particular
set of nine higher-level programming issues (such as data variable
organization, for example), details are given in Section V,
Interpretive Resultse This second research framework is the basis
for abstracting and interpreting what the study”s findings
indicate about these higher-level programming issues, as well as
explicitly mentioning several individual relationships among the
programming aspects and their conclusionse.

Since the design of the experiments, the choice of treatment

factorsy, etcey were at least partially motivated by certain

sjeneral beliefs regarding softuare cdevelopment (such as
“disciglined methodology reduces software development costs”, for
example), it should be possible to explicitly state what
comparison outcomes amony the experimental treatments were
excected a priori for which programming aspects.s A list of
preplanned exgectations (so-called "basic suppositions") for the
outcomes of each aspect”s experiment would provide a framework for
evaluating how well the experimental findings as a whole support
the underlying general beliefs (by comparing the actual outcomes
with the basic suppositions across all the programming aspects).
Such a list of tasic suppositions was conceived prior to
conducting the experiments, and it constitutes the third research
fremework; details are given in Section V, Interpretive Results.

TR-¢EE Section 111

This framewsork is the casis for interpreting the stucdy’s findings
in terms of evidence in favor of the basic suppositions and
general peliefs.

Step &: gxgerimental Desianp

The experimental design is the plan or setup according to
which the experiment is actually conducted or executed. It is
] basea upon the statistical model, and deals with practical issues
such as experimental units, treatment factors and levels,
exgerimental lccal control, etce The experimental design employed
for this stucdy has bteen discussead in considerable detail in
Section 11, Specifics.

Step 7: Collecteg Data

The pertinent data to carry out the experimental design was
collectea and processed to yield the information to which the
statistical test procedures were appliede Some details of this

execution phase are jiven in Section I1, Specificse
Step €: gtatistical Jest Procedures

A statistical test procedure is a decision mechanism, founded

upon general principles of mathematical probability and
‘ comoinatorics and upon a specific statistical model (i.esy
| reguiring certain assumptions), which is used to convert the
statistical hypotheses together with the collected data into the
statistical results. As dictated by the statistical model, the
statistical tests used in the study were nonparametric tests cf
horogeneity of populations against shift alternatives for small

samples. Jonparametric tests are slightly more conservative (in
rejecting the null hypothesis) than their parametric counterparts;
nonparametric tests generally use the ordinal ranks associated
with a linear ordering of o set of scores, ratner than the scores

themselvesy, in their computational formulase 1In particular, the
standard Kruskal-wallis H-test [Siegel S6; pp. 184-193] ana

=T el s e b i+ A A R e,

TR-46EE Section 111 31

Mann-Whitney U-test [Siegel 54; pp. 116-127] were employed in the
statistical results step. Ryan“s Method of Adjusted Siconificance
Levels [Kirk 68; ppe 97, 495-497], a standard procedure for
controlling the experimentwise significance level when several
tests are performed on the same scores as one experiment, was also
emgloyed in the statistical conclusions step.

The Kruskal-wWwallis test is used in three-sample situations to
test an X = Y = 2 null hypothesis; its test statistic is computed
as

H = 12*[(Rx*Rx/nx)+(Ry*Ry/ny)+(R2*Rz/n2)]/l(n)*(n+1)] = 3I*x(n+1)
where Rxy, Ry, and Rz are the respective sums of the ranks for
scores from the X, Y, ana 2 samples; n equals nx+ny+nz; and nx,
nys and nz are the respective sample sizes. The Mann-whitney test
is used in two-sample situations to test an X = Y null hypothesis;
its test statistic is computed as

U = minl nx*ny + nx*(nx+1)/2 = Rx ; ny*nx + ny*(ny+1)/2 = Ry]

where Rxy; Ryy nxy and ny are defined as before.

For every statistical test, there exists a one-to-one
mappingy usually given in statistical tables, between the test
statistic --whose value is completely determined by the sample
data scores-- and the critical level. The critical level &
LConover 71; pe. 81] is defined as the minimum significance level
at which the statistical test procedure would allow the null
hypothesis to be rejected (in favor of the alternative) for the
given sample data. Thus critical level represents a concise
standarized way to state the full result of any statistical test
procedure. Two-tailed rejection regions are applied for tests
involving nondirectional alternative hypotheses, and one-tailed
rejection regions are applied for tests involving directional
alternative hypotheses, so that the stated critical level always
pertains directly to the stated alternative hypothesis. A
decision to reject the null hypothesis and accept the alternative
is mandated if the critical level is low enough to be tolerated;
otherwise a decision to retain the null hypothesis is made.

TR-6C& Section II1 32

The Ryan®s procedure is used in situations involving multiple
pairwise comparisons, in order to properly account for the fact
that each pairwise test is made in conjunction with the others,
using the same sample gata. The individual critical levels &
obtained for each pairwise test in isolation are acdjusted to

g

prcper experimentwise critical levels 3° via the formula

a7 = [(r+1)*k/2] » 3
where k is the total number of samples; and r is the number of
(other) samples <hose rank means fall between the rank means cf
the particular pair of samples being comparedes A simple "minimax"
step --taking the maximum of the several adjusted pairwise
critical levels, plus the overall comparison critical level, which
are all minimum significance levels-- completes the procecdure,
yielding a single critical level associated jointly with the

overall and pairwise comgarisons.

These tests and procedures apply straightforwardly when
differences in location are considereds A slight modification
makes them applicable for differences in disgersion: prijor to
ranking, each score value is simply replaced bty its absolute
deviation from the corresponding within-grougr sample median
[Nemenyi et ale 77; ppe <c$6-270]. It should be noted that this
mocification results in only an approximate method for solving a
tough statistical problem, namely, testina whether one gopulaticn
is more variable than another [Nemenyi et al. 77, ppe 279-2831].
The mocification is not strictly statistically "kosher" in the
general case (it weakens the power of the test procedures and can
yield inaccurate critical lLevels when testing for dispersion
differences), but every other available method also has sericus
limitationse This method has teen sho«n to possess reasonable
accuracy as long as the unocgerlying distributions are fairly
symmetrical and it adapts easily to the study’s three-way

o

compariscn situation.

Step §: Sgatistical Results

A statistical result is essentially a decision reached bty

TR-688 Section 111l

-

g

applying a statistical test procedure to the set of collected and
refined data, regardin; which one of the corresponding pair (null,
alternative) of statistical hypotheses is indeed supported by that
datae. For each pair of statistical hypotheses, there is one
statistical result consisting of four components: (1) the null
hypothesis itself; (2) the alternative hypothesis itself; (3) the
critical level, stated as a probability value betueenlo and 1; and
(4) a decision either to retain the null hypothesis or to reject
it in favor of (i.e., accept) the alternative hypothesis.

By convention, the null hypothsis purports that no systematic
citfference appears to exist, and the alternative hypothesis
purports that some systematic difference seems to existe The :
critical level is associated with erroneously accepting the
alternative hypothesis (i.e.y claiming a systematic difference
when none in fact exits)e The decision to retain or reject is
reached on the basis of some tolerable level of significance, with
which the critical level is compared to see if it is low enough.
In cases where a null hypothesis is rejected, the appropriate
directional alternative hypothesis (if any) is used to indicate
the direction of the systematic difference, as determined by
direct observation from the sample medians in conjunction with a

one-tailed teste.

Conventional practice is to fix an arbitrary significance
level (eegey 05 or «01) in advance, to be used as the tolerable
level; critical lLevels then serve only as stepping-stones toward
reaching decisions and are not reported. For this partjally
exploratory study, it was deemed more appropriate to fix a
tolerable level only for the purpose of a screening decision

(which simply purges those results with intolerably high critical
Levels), and to carry the actual critical level along with each
statistical result. This unconventional practice yields
statistical results in a more meaningful and flexible form, since
the sizjnificance or error r*sk;of each result may be assessed
individually, and results at other more stringent significance
levels may be easily determined. Furthermore, the necessary

il gk b

TR-6E? Section 1IlI 1A

infcrmation is retained for properly recombining multiple related
results on an experimentwise basis in the statistical conclusions

Stepge

The tolerable level of significance used throughout this
stuay to sceen critical levels was fixed at under .20. Although
fairly high fcr a confirmatory study, it is reasonable for a
partially exploratory study, such as this one, seeking to discover
even slight trends in the cata. A critical level of .20 means
that the odds of obtaining test scores exhibiting the same degree
of gifference, due to random chance fluctuations alone, are cre in

fivee.

As an example, the seven statistical results for Location
comparisons on the programming aspect STATEMENT TYPE COUNTS\IF are
shown telows (N.3. The asterisks will be explained in Step 17.)

null alternative critical (screening)
hypothesis hypothesis level decision
Al = AT = 0T =(Al = AT =_0T) «0670 reject
Al = AT Al < AT «04ES reject
Al = DT Al # DT >.9909 retain
AT = DT DT < AT «J111 reject
AI+AT = DT DT < AL+AT «089% reject *
Al+DT = AT AL+DT < AT .J08¢% reject
AT+DT = Al AT+DT # Al «33%2 retain *
Observe that the stated decisions simply reflect the application
of the .20 tolerable level to the stated critical levels. Results

uncer more strincent levels of significance can be easily
determired by simply applying a lower tolerable level to form the
cdecisions; esgey at the .C5 significance level, only the Al < AT,
DT < AT, and AI+DT < AT alternative hypotheses would be accepted;
only the AI+D7T < AT hygpothesis would be accepted at the .01 level.

Step 1C: Statistical Conglusions

The volume of statistical results are oraanized and condensed
into statistical conclusions according to the prearranged research
framework(s)e A statistical concluson is an abstraction of
several statistical results, but it retains the same statistical
character, having teen derived via statistically tractable methods

anc possessing an associated critical Llevel.

.t

St

TR-458 Section 111 3%

Specifically, the first research framework mentioned above
was employed to reduce the seven statistical results (with seven
individual critical Llevels) for each programming aspect to a
sinyle statistical conclusion (with one overall critical Llevel)
for that aspect. The statement portion of a statistical
conclusion is simply one of the thirteen possible overall
comparison outccmes. Each overall comparison outcome is
associated with a particular set of statistical results whose
outcomes support the overall comparison outcome in a natural way.

For example, the DT Al < AT conclusion is associated with the
following results:

reject Al = AT

DT in favor of =-(AI = AT = DT),

reject AI = AT in favor of Al < AT,

retain Al = DT,

reject AT = DT in favor of DT < AT, and

reject AI+DT = AT in favor of AI+DT < AT,
Since the other two comparisons (AI+AT versus AT, AT+DT versus AI)
are in a sense orthogonal to the overall comparison outcome
(DT = Al < AT), their results are considered irrelevant to this
conclusion. The chart in Diagram 2 shows exactly which results
are associated with each conclusion: the relevant comparisons, the
null hypotheses to be retained, and the alternative hygcotheses to
be accepted. The cther portion of a statistical conclusion is the
critical level associated with erroneoﬁsly accepting the statement
portions It is computed from the individual critical levels of

certain germane resultse.

A simple deterministic algorithm, based on the chart in
Diasram 3, was used to generate the statistical conclusions (and
compute the overall critical level) automatically from the'
statistical resultses For each programming aspect, the algorithr
comparec the actual results obtained for the seven statistical
hypotheses pairs with the results associated with each conclusicn,
searching for a matches Ryan“s procedure was used to properly
combine the individual critical levels for the overall result and
the relevant pairwise results, by adjusting them via the formula
and then taking their maximum. The critical levels for the

TR E————

36

TR-688 Diagram 3

Iv>14+1V .

. LV>1Q+1V

. 10+1IV>LY
[V>10+LV LQeIVDOLY
LA+LY>IV LV¥>10Q+1V
10+1V>IV »

¥ .

» .

. Lv>10+1vV

. LAd+1I¥>1YV
[v>10+1V ®
13+1Y>1V ®
Iv=10d+1V 1vV=10Q+IYV

1i+IV>1Ld 1v¥>14d Iv>1@ IV>LY (14=L1V=1Y)~- IV > 1y > 14¢
lvelv>1d 1v>1d Iv>1d 1V¥>IvV (1Q=1Vv=1IVY)- iv > Iv > 1¢
10>1V+Ty 14>LVY 1d>IV IV¥Y>1lY (1Q=1V=]1IV)- 14 > IY > 1V
v 10>1v Iv>1qa IV>1v (L4=1V=1VY)- IY > 14 > 1V
» 1v>1a 10>IV LY>IVY (1d=1V=]IVY)- 1v > 14 > TV
13>1VelyV 10>1Y 1d>IV LVY>IV (LA=LV=]IV)- 19 > Lv > IV
13>LVely 10>1V 1d>IVY 1¥=IV (Ld=1V=IV)- 19 > 1¥ = IV
1ve+IV>10 1¥>14d4 Iv>10 Lv=1IV (1d=1V=IV)- i¥ = I¥ > 10
v 1v>1d4 1d4=Iv LV¥>IV (10=1V=IV¥)- ¥ > 1Iv = 1@
» 14>1VY 14=1IvV IV¥>lv (1404=1v=1IV)- iv = 14 > 1v
» 19=1v 1Iv>14d IV>1Y (1d=1V=1IV)-~- Iv > 14 = 1V
¥ 10=1v 1a>IV LV>IV (10=1V=]IV)- 19 = 1v > IV
(11ne4ap] 1¢ = 1y = 1Yy
e T e e e e b M, e e el e i
:SuUOLSN)Iuo0)d
13=1Vely 10=1v 14=1Y 1v=IV 1a=1v=1Vv
:s3InSsay

Ag uoisnyjouod J)nu
40 Aue yirLm paleLlross
3q Isnw si1sayiodAy jJ\1n
Iyl pue pautLelray
jeyy 03 juenadlads 3jou

y’ea yiim pajeidrosse

*31n"jap
3yl yitm pajerdosse 3Je Ayl UaIYl *sSUOLSN)IIUOI }InNU_unu 3AY]
P eLJ31lJ) 3yl AjsLies J0U OPp SIINSIJ 4O 13S € T °*parrafaq
U 3yl J13n3J3yn sieadde paydairdre ag o3 SLSAIYINdLY IALleusdy e

3Q ISNW 3L JIAIIIYM sdseadde siLsSaIylodAy 11NU 3yl fuotsniouod

UOSLJedWO) © S3JediDul YSLJIISe uy °UOLSNIIUOD }2I2L3ISLLIPS

d4e S1INS3J 1edtIstiels ydtym satjidads 3a4°yd GuULmO)19) Iy)

°¢ weyheig

SR

“

‘ |
g
E

g

A%

TR-668 Section 111l . 2

relevant pooled results were factored in via a simple formula
based on the multiplicative rule for the joint probability of
independent events.

Continuing the example started in Step 9, the statistical
results shown there for location comparisons on the STATEMénT TYPE
COUNTS\IF aspect are reduced to the statistical conclusion
DT = AI < AT with .0780 critical Level overall. The five results
not marked with an asterisk in Step 9 match the five results

% associated abcve with the DT = Al < AT outcome. (Note that the
other two marked results represent comparisons which are
irrelevant to this conclusion.) The .0465 and .0111 critical
levels for the two pairwise differences are adjusted to 0697 and
«0Z32y and the maximum of those adjusted values plus the ,063C
overall difference critical level is .0697. The relevant pooled
comparison critical level of .0089 is factored in by taking the
complement of the products of the complements:

1 = 0(1 - 0657)*(1 - ,0089)]1_ = . .0780

Thus, the statistical conclusions are in one-to~one
correspondence with the research hypotheses and provide concise

answers on a "per aspect' tasis to the questions of interest.

Further details and complete Listing of the statistical
conclusions for this study are presented below in Section 1V,

Step 11: Research Ipterecetations

- B

The final step in the approach is to interpret the

é statistical conclusions in view of any remaining research
framework(s), the researchers” intuitive and professional

% exgectations, and the work of other researchers. These research
3 interpretations provide the opportunity to augment the objective
fingings of the study «ith the researcher”s own sutjective

i judsments ano interpretations. The second and third research
frameworks mentioned above --namely, the intuitive relationships
among the various programming aspects and the basic suppositions
governing their expected outcomes-- were considered important.

s ‘
whoy . -
L~ e AR o IR 1

TR-5E8 Section 111l e

However these particular research frameworks can only be utilized
for the research interpretations, since they are not amenable to
rigorous manipulation. Nonetheless, within these frameworks which
are base¢ upon intuitive understanding about the programming
aspects ana software develcpment environments under consideration,
the study oears some of its most interesting results and
imglications. Complete details and discussion of the research
interpretations of this study appear in Section V.

s e C e . - e T R . » D R = i . st v

o

TR-6EE Section 1V 20

E Iv. gbjective Results

This section reports the otjective results of the study,
namely, the statistical conclusions for each programming aspect
considered. The tone of discussion here is purposely somewhat
disinterested ana analytical, in keeping with the empirical and
statistical character of these conclusions. All interpretive
discussion is deferred to Section V.

Each statistical conclusion is expressed in the concise form
of a three-way comparison outcome “equation.” It states any
observed differences, and the directions thereof, among the
programming environments represented by the three groups examined
in the study: ad hoc individuals (AI), ad hoc teams (AT), and
disciplined teams (DT). The equality Al = AT = DT expresses the
null conclusion that there is no systematic difference among the

sroupse An inequality, eegey Al € AT = DT or DT < Al < AT, i
exgresses a non-null (or alternative) conclusion that there are ;
certain systematic difference(s) among the groups in stated
direction(s). A critical level (or risk) value is also associated
with each non-null (or alternative) conclusion, indicating its
individual reliability. This value is the probability of having
erroneously rejected the null conclusion in favor of the
alternative; it also provides a relative index of how pronounced

- e e~

the differences were in the sample data.

The remainder of this section consists of (a) presenting the
full set of conclusions, (b) evaluating their impact as a whole,
(c) exposing 2 "“relaxed differentiation”™ view of the conclusions,
(d) exposing a "directionless”" view of the conclusions, and (e)
individually highlighting a few of the more noteworthy
conclusionse.

Presentation

Instances of non-null (or alternative) conclusions indicating

Aadd

TR-6EEf Section 1V 4"

sore distinction among the groups on the bYasis of a particular
pruzramming aspect are listed by outcome in Tables 2.1 (for
location comparisons) and 2.2 (for dispersion comparisons). A
comglete itemization of these distinctions, in English prose form,
appears in Appendix 2. The complete set of statistical
conclusions for poth location and dispersion comparisons appear§
in Table 2 arrangyed Dy programming‘aspect.

Examination.of Table 3 immediastely demonstrates that a larce
numper of the programminyg aspects considered in this study,
esgecially product aspects, failed to show any distinction between

the groupse This low "yield"” is not surprising, especially among

‘product aspects, and may be attributed to the partially

exgloratory nature of the study, the smatl sample sizes, and the
general coarseness of many of the aspects considered. The issue
of these null outcome occurrences and their significance is
treated more thoroughly in the next subsection, Impact Evaluation.

It is worth noting, however, that several of the null
conclusions may indicate characteristics inherent to the
apeglication itself. As one example, the basic symbol-table/scan/
parse/code-generation nature of a compiler strongly influences the
way the system is modularized and thus practically determines the
nuroer of modules in the final procuct (give or take some
occassional slight variation due to other design decisions).

smpact Evaluation

These statistical conclusions have a certain objective
character -~since they are statistically inferred from empirical
dJata=- and their collective impact may be objectively evaluated
according to the following statistical principle [Tukey 6%, pe.
§4~55)., Whenever a series of statistical tests (or experiments)
are made, all at a fixed Level of significance (for example, 17),
a corresgonding percentaje (in the example, 1CX) of the tests are
expected a priori to reject the null hypothesis in the complete
atsence of any true effect (i.e.y due to chance alone)s This

TR-688 Table 2

|
]
|
!
'
]
!
|
]
]
|
|
|
[}
|
'
)
!
)
]
[}
!
[}
[}
[}
[}
'
'
|
|
|
)
'
[}
[}
'
!
[}
[}
]
|
|
|
|
!
[}
|
|
[}
[}
[}
)
b
]
|
|
]
]
'
|
'
]
)
|
[}
[}
]
|
|
|
)
]
|
|
|
'
[}
|
|
)
[}
|
|
)
|
'
!
|
|
|
]
'
]
]
'

o

d by outcome

TER
ARAMETER
ETER

1sons, arrange

L

Compar

=
NNNZ2We
el adad’ P L 4
229000V
2090 x<D
OOOWm
o xw
< J
wwww>m
aaaa
0000 Jn
[SISISISY 47%]
0NNV MO
(%] oa
[V VY XV [VY JVN i |
- e el d D D
[eiofealoges o P00
LdgLELEELO <
vt g = 0 2 (O
wxExxxxe O
F<<<WI
Z>3323253209

for Location

B o e

programming

aspect

<K< O
0D o o e s o 1 (1)
W< <<>W
(% F-Y-Y-Y-Y-% 4 4

*

w

L

Non-Null Conclusions,

CX T TN & o ol ol o
YOO N
L L OTN £ e TaNTVAY o o¥)
OO~ r ===
o000 00 00
QOO0O0Oo00LCo

ica
level

Table 2.1
= DY

comparison crit
outcome

Al < AT

w < =

DT < Al

AT

T \ NONINTRINSIC

VO 00O
OO
MrOWVOO
Lt ol ol ol g
e 9 0 00

QOO0

AT < DT Al
Al < AT

D7

1546

(SEG,GLOBAL) USAGE RELATIVE PERCENTAGES \ NONENTRY \ UNMODIFIED

&

CALL \ INTRINSIC

F
INTRINSIC
INDINGS \ POSSIBLE

ROC)
TURN
\V

“awn
Q2 W
(L]
Pt]
-

\

RE
IC
8

nanz
== b=
2220
29
ooow
wwoa

CEDU
RINS
DATA

0
T

PR
IN
EG)

wwww

aaaQ ~s-0n

3= 3= 3= = -

opmpmpe N

Z2«<
[l ad adad < (= X=1++]
2ZIIB™O
W WWO -
EEFEELCVO

WWWWNOL =

[l adaladal=1=10
CLLCOLIDW
FEEuZan
NNNNQrd It

«)

oncCC oNNe
DM OOV OMMO
MO
Qe OQr=r=e=(De
o0 000 00

ococCcOonoco

AT

DT < Al

NS
gS \ UNIQUE

coz w

AT]
ATI
TI10

-ld DN
—— D
aawo L <
EEXW
oowz
VW <

Ed o
ww<
gt 3
DOV
Qaown
(-1-1- 41
Xxax

Ll iad
na.-
NNVNNOE<
ataaawod
W W W= O
P Q.
nunuy W
VIO
DoQOMoow
00O O™~
-meme. 2w
422
xxxxx< o
A U W L ot i ot
= e o e P D 22
223200 <«>D
aodocawa
EXLETNWX
OCO000ON>«<
UOVOWWLE

0

OO rO
AN NI MOOW
CrirmNNT O
DOO0N=0OQe
@ & 0606 0 0 0 0
(=]e(welealo -]

AT < DT

Al

——
a<

vv

-
<

vv

—
<<

LINES

0.1164

AT < DT < Al

MODIFIED

\

TRY
TRY

~ey
~m
-0y
-
o e

co

41

0.154°

-
o«

vv

ot
<

vVv

-
«<a

PROGRAM CHAMGES

0
* this column records the frequency of occurrence for each comparison outcome

v
<
v
[
<
v
[
[~

e e

TR-688 Table 2 continued

arranged by outcoae

1sSONsS,

ispersion Compari

for D

Non-Null Conclusions,

~

~N

Tatle

programming
aspect

»
¢

L

ica
level
= 0T

compariscn crit
outcome

Al < AT

E
R
DEPENDENT

”J
-l NN «
Qo wwn
2 VVx”~
(=% L £ 4}
ZWr= <
oZ2a.9
W 2
=00 e
nwZcxvao
UWW2
2000 e
2x 230
owww
(S 1.9 N RVTE 4
> > -
Wi p= b= 0
aa -~
oOowww
LLLOLLOWVA
NNECLOV
wnnaw
wwun
ded L LA -
ocaa dd
aQ< <<
-0 DD
XXEWWOO
L= Jd
SO2wWwWoLV
EX oo
IO
Ll ol e - V%)
LgCCEENN
Qo ww

~)y

O C OOOr"
[o T3 [ww [om FS Lo}
—UCONC
OQeerer=Ovr
o0 00 00

QLOO0OoO

AT

DT < Al

STEPS \ MISCELLANEOUS
NONINTRINSIC

TER JOB
ATIONS
ATIONS \

- LW 10]

=5>>
ozZz2
e

P
0
0

[Tak ¢l]
NO-
[
D00
o o0
000

Al

AT < DT

“v

D A ol o
nwe
(L3 1 &
~eer
o 00
[w] &1 8

Al < AT

DT

D
\ MODIFIED

IFlE
TRY

QaZzw

o e=Q0O0.
QO™
Uy =W
QO™ De
e 00 00
OCOOOo

AT

DT < Al

o
W
bt g
(7. 1"
&
-a
xo
-z
-4
o~
- >
a
(8] (V]
(] x2
(%] Sw
= aZ
—y wo
a (& P-4
Ll o
-4 g
- Q.
-4 -
o ~ <
£ O m
-0
” WNZJ
2wWO
ded ™E
wed XO”
< =W
Vo Z20vn
o~ -4 w
VO 20
o0 OV«
xx 22
aa -2
e~ W
-d D
s ululL X
[+ 4- 4=]VV)
(ANDDwa.
~—rao
22Wwaw
dDvwwwa
[o]ololo) . Wa)
wueExE W
aaunn
ww Z
Ql”~”0Ow
>= =)
(ol X 2 X% 1 X e]
LA
OO WM
ZZmOX
wWwib==> <
ErX¥g<<>
Wid DI
00 «
LLIDO M
2254
NN LD

[PRTaV"aY T Y-V
IV NN e
(XYL AL oY ¥
D=0
R

OACO000

AT < D1

Al

PARAMETER

\

Al < AT < DT
Al < T < AT

PARAMETER

BAL
OBAL

<dd

dONNNN

VZuwwuww

VOOV

rrs<a<

2z ==
whnzzz2

Err—wwww

W220000
_D0xxxa
<OOoWwuww

(A 1= - Y- N. Y. N
(7}

Wi wiwJdw

- N-W.9-N.9-%

WOOO QOO

ALWLLLLL

(e 17 X7 X2 Xve L%]

(%]

W od d d wd d

XOdWwWwaAaw
(ol & € & & & 9
Ll L L L]
Txxxa
WL
O>IO>D>>2>>
<
g
Ul = = e po e P
P
- = Y-Y-Y-Y*T>)

—eeCor.-M

QT OViIVING

C I u O
0000
e 0 o0 00 0
QuGcoouwo

\

~Rs
(Y3 o

NONENTRY \ UNMODIFIED

B
ca<

vVVv

P
QDL

vVvvVv

P
L4 -

42

E Y]
-
(A Y O

oo

column records the fregyuency of occurrence for each comparison outcome

is

DT < AT < Al

T T T T e

I .

Loy

TR-688 Table 3

Table 3. Statistical Conclusions

N.B. A simple pair of equal signs (= =) appears in place of the null
outcome AI = AT = DT in order to avoid cluttering the table excessively.

X I R L A R R R L R R R R A R R R R I R R R R iR s dddddidss

| | location i dispersion |
| programming aspect | comparison :critical| comparison :criticall
| | outcome : level | outcome : level |

2222222222 e R R 2 R R S 2 X A R R X e R e R I R R eSS X2 R 2 122222242 ds]
|development process aspects : |
|

: |
| : | :
| COMPUTER JOB STEPS | DT < AI = AT : 0.0036 | = = s
| MODULE COMPILATIONS | DT < AI = AT : 0.0223 | = - s
| UNIQUE | DT < AI = AT : 0.0110 | = L $
| IDENTICAL | = = s | = = :
| PROGRAM EXECUTIONS | DT < AI = AT : 0.0221 | - - H
: MISCELLANEOUS | DT < AI = AT : 0.1445 | AT = DT < AI : 0.0775
| : | :
|ESSENTIAL JOB STEPS | DT < AI = AT : 0.0037 | = - H
|AVERAGE UNIQUE COMPILATIONS PER MODULE | DT < AI = AT : 0.0883 | = = H
:m UNIQUE COMPILATIONS F.A.O. MODULE : DT < AI = AT : 0.1180 | DT < AI < AT : 0.0514
H |]
| PROGRAM CHANGES . | DT < AI < AT : 0.1848 | - = s

LI I Y e T eI T R T I e S a 12222 a 222ty
|final product aspects :
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

*

| 3 | |

| : | H |

: MODULES | - = 3 | = = s :
| H | :

:szcnznrs | AT < AT = DT : 0.0634 | = = : :
| : | s

|SEGMENT TYPE COUNTS : o : | : |

| PUNCTION | = = : | = - H |

{ PROCEDURE } = = s | = = s :
| : | :

| SEGMENT TYPE PERCENTAGES : | : | 3 |

| PUNCTION | - = : [= = : |

: PROCEDURE | = = : | - - : :
| : | H

|AVERAGE SEGMENTS PER MODULE | = - : | DT = AI < AT : 0.0218 |

| | : | : |

:anas | AI < DT < AT : 0.1194 | - - : :
| : | :

:sturznzurs | = - : | AT < DT = AI : 0.1954 |

| : I : |

| STATEMENT TYPE COUNTS : | : | : |

| = | '~ - s | - - s |

| IF | DT = AI < AT : 0.0780 | = = : |

| CASE | = = : | - = H |

| WHILE | = - : | = = H |

| EXIT | = = : | = = H |

| (PROC)CALL | - - : | DT < AI = AT : 0.0325 |

| NONINTRINSIC | - - : | DT < AI = AT : 0.1862 ,

| INTRINSIC | DT = AI < AT : 0.1732 | - = : |

: RETURN I DT = AI < AT : 0.0860 = DT < AI < AT : 0.1398 :
$ H

ISTATEMENT TYPE PERCENTAGES : | : | : |

| = | - - 3 | = - s |

| | DT = AI < AT : 0.1069 | = = : |

| CASE | - - ¢ | - - 3 |

| WHILE | = = : | - - H |

| EXIT | = - : | = - : |

| (PROC)CALL | - - : | - - : |

| NONINTRINSIC | = - : | - - : [

| INTRINSIC | - = : | - - : |

: RETURN | - - : | DT = AT < AT : 0.0401 :
| t | :

lavznacz STATEMENTS PER SEGMENT | AT = DT < AI : 0.1706 | - - : :
| : | H

;sznacz STATEMENT NESTING LEVEL | - - s | = - t :
| : | t

|DECISIONS | DT = AI < AT : 0.1468 | - - t :
| : | H

g = I SR T

44

TR-688 Table 3 continued

it Sl . T b b S A e o s ek o e L o aadt alt

—— . ————————— ————— — o e it o e i S e S s . e S S, S S s S . . e e e e e s e . e S e S e e . .

=
DT < AI = AT : 0.0653

AI = AT < DT : 0.0750

Al = AT < DT : 0.0557
AI = AT < DT : 0.0943
AI < AT = DT : 0.1529

o o

H
H

DT = AI < AT : 0.1100

—— . —— ———— o ———————————— — ——— ————— ——— ———— ——————————————————————— ———————— —— —————

~ 0
wiKo
oNN
~ 1o
oo

e o0 os e se se s se se ee
.

[BN~
[Qg

neo v v
SN
<t

[B B] [I } an
- e
< i<

L B B | L B] [I)

[I | [I] [I]
D
=
w
M
(3
(7}

3

(%]

o
(3]

wf. (0]

(2] =z

Mn“C =]

- - Xinz
oxun m. =20
MN o

ZZ - [l 3

O Wl

HZEITVO N LZ

HOZ N"M D

Oz w O

T H

[X~]
[BB

NONINTRINSIC

o o
N o~
™M ® wn
o+ ©
oo o
e oo s 8o 0o o0 e se se v ve
HE -
< <
"NV [B BN BN]
- B
<< A
BvveEs ne e
0B B
o <
~N w
~™m ™
~ -
~ o
o o
%0 00 40 80 00 %8 g0 e 0 e W
& B
< <
"N eVvEyVv [B B B]
-~
< <
[B BB] nean
& &
o 0
5
(5]
(7]
)
z
3
<
g
-4
(8] « (5]
- e -
w (2]
O ZOO 0w Z0
S] Z HH
2.E22,10 B2
Innm';r.l T“um.x
EREEEZICSRE
ZuozZzZ Wm;nvm
HOZHMHX Oz
o Z B N“W
(3 oz 1+
a 2 - nuF
>
<

PROCEDURE

NONINTRINSIC
INTRINSIC

NONINTRINSIC

INTRINSIC

- —
- -
- ~
- —
°c o
e oo oe 80 oo e oo e o8 o se o0
(5] &
< [~}
[I] [] AV I B |
& &
a <
[V | (] [
5] -
< <
a0 @ o
am o ~
oo (") -
- =3 ~
co o o
- &
< < (=] M
vva (] [I]
[) (5] 3]
an < L1
e eV vanan
(515 (5] -
< < <
5
5]
(7]
—_— -
a o
3 g
S 8
o Q
(] (3] aQ
a, X
n o am
Q 0 B
2 wl? man
S wifly Hex
bz u m YONM
<O D < KEDMW
S N-W N3 ILM =
2E0i1g 1 saa 2
wa > 150
IF” < A%
g i<
< alaqQ

k-3
AI < AT = DT : 0.1614

UNMODIFIED

MODIFIED
MODIFIED

UNMODIFIED

NONGLOBAL

-~ o
w)
S ~
-~ O
o o
b6 B
a2 N
v
& &
< o
"avae
- -
<
—
~
o~
-
o
e o0 40 0
[
(=]
LI B B)
(5]
<
vaaes
-
<
«
(9
z
® W
0 W
oM
6 W
o i3
zs2d
£ 3

GLOBAL

ENTRY

® o
~ "
o~ ~
o o
o o

(3
< 8

S8R0 0NNYV
- 5]
< <

NN AavVERNND
W -

<

e oo se oe o0 e os e

[B |

[B]

a [=]
(2] [
aH AH

B B QA

-

=HOaHO MK

DHmDHIIL

OZZo0ZmwA<<

HU“HUMOW

(=] OmmL
=z =00
=
o
=

DT ¢ 0.1507

AT

-
<

PARAMETER

AI : 0.1090

VALUE

REFERENCE

LOCAL

=
-
-
-
-
L3
=
-
-
DT <

"ENanNVvVe s

&

ENTRY

NONENTRY

MODIFIED
UNMODIFIED

L
AI < AT = DT : 0.1748

PARAMETER
LOCAL

AVERAGE NONGLOBAL VARIABLES PER SEGMENT

——— ——— ——— ————————— —— ——————— ——— —— — — ————————————————————— ——————— — ——— ———— — ———— —

e

TR-688 Table 3 continued 45

e | 1

PARAMETER PASSAGE TYPE PERCENTAGES :
VALUE
REFERENCE

(SEG,GLOBAL) ACTUAL USAGE PAIRS
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED

|
0.1606 |
0.1606 |

Al < AT = DT
AI < AT

"
o
(=]

AT Al 0.1061

LI B B BN BN BN BN B]
LR BN BN BN B B
SABRRRNRDN
LI B B BN BN B B

AT 0.1227 DT < AT : 0.0523

Q
-3

I

|

|

|

!

I

I

I

!

|

|

I

|

:

(SEG,GLOBAL) POSSIBLE USAGE PAIRS | Al
ENTRY |
MODIFIED I
UNMODIFIED |
NONENTRY I
MODIFIED I
|

|

!

I

|

I

|

]

I

|

|

|

|

I

|

I

|

I

I

|
|
|
|
l
|
!
|
|
|
|
|
|
|
|
| Al
!

|

|

}

| UNMODIFIED

|

|

|

I

|

|

|

|

|

|

|

|

I

i

|

|

|

|

|

*

0.0786
0.0510
0.1727

AT = DT
AT

AT

|

|

|

]

|

|

|

{

|

|

!

|

I

|

|

|

|

|

|

| Al
| DT
| AI DT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

AN AR NRA
[BB B B BN N |
ReARANRRA
RRAAARERRA

MODIFIED
UNMODIFIED

(SEG,GLOBAL) USAGE RELATIVE PERCENTAGES
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED

0.1173
0.1232

AT
AT

DT
DT

> >
SRS}

>
9

AT < DT 0.1546

"RARBNIAAD
AR ENAAD
LI BN B B B B BN
LI 2 BN B BN BN BN AN]

(SEG,GLOBAL,SEG) DATA BINDINGS :
ACTUAL
SUBFUNCTIONAL

INDEPENDENT 0.1963

-‘ -
= -
Al < AT = DT
POSSIBLE = AI < AT 0.1529
RELATIVE PERCENTAGE - by

L2 iy I i R I i R A e A i i i i iasdddddy

H
:
H
H
2
H
H
H
H
H
H
H
H
H
:
:
H
:
H
B
H
H
:
H
H
H
b
H
H
b
3
]
3
H
:
H

nABRD

DT = AI < AT : 0.1861 | DT

9 00 00 0 90 40 66 0% 00 90 e U S0 06 96 20 G0 G0 0 Gs 6 S0 se 06 S0 60 0% S0 G0 U G0 e 00 S0 S0 0 se 08 S 8 e

|
|
[
|
|
|
|
[
|
|
|
|
|
|
{
I
]
|
|
|
|
I
I
|
|
|
|
|
{
|
|
|
|
|
|
!
*

TR-688 Section IV L&

exzected rejection percentage provides a comparative index of the
true impact of the test results as a whole (in the example, a3 2%
actual rejection percentage would indicate that a truely

significant effect, other than chance alone, was operative).

The point here may be illustrated in terms of simple
coin-tossing exgeriments. The nature of statistics itself
dictates that, out of a series of 100 separate statistical tests
of a hypothetically fair coin at the .05 significance level,
roughly 5 of those tests would nonetheless indicate that the coin
was biased;, if only 6 out of 10 tests of a real coin indicate
Dias at the .CS Level, those six results have very little impact
since the coin is behaving rather unbiasedly over the full set of

testse.

This same "multiplicity"” principle applies to the statistical
conclusions of the study, since they represent the outcomes cof 2
series of separate tests and were assumed in the statistical model
to pe separate experiments. It is appropriate to cvaluate the
location and dispersion results separately, since they reflect two
separate issues (expectency and gredictability) of software
develogment behavior. Similarly, it is also appropriate to
evaluate the process and product results separately. Finally, it
is only fair to evaluate the "confirmatory" aspects as a distinct
sutset of all aspects examined, since they alone had been honestly

considered prior to collectingc and analyzing the data.

The details of this impact evaluation for the study”s
objective results, broken down into the appropriate categories
identified above, are pgresentec in the following table. The
evaluaticn was performed at the a=.2C significance level used for
screenin; purposes, hence the expected rejection rercentage fcr
any cateyory was 20%. For each category of aspects, the table
gyives the number of (nonreaundant) programming aspects, the
expected (roundec to whole numcers) anc actual numbers cf
rejections (of the null conclusion in favor of a directional

alternative), anc the expected and actual rejection percentagese.

- PESRS S.

TR-688 Section IV

I

An asterisk marks those categories demonstrating noticatle

statistical impact (i.es, actual rejection percentage well abcve
expected rejection percentage).

category

e cccccccaccee—- ,mcccccatmmcnmccafoe—n———

location
process
confirmatory only
product
confirmatory only
confimatory only

- - - — - > - = -) - - - -

dispersion
process
confirmatory only
product
contirmatory only
confirmatory only

number
of
aspects

130
1

wirnn
V.1~ le ¢ o

130

1

WINN -
WV oOooo

expect.
num. of
rejecte

26

2

NO £ Ay

26
2

1
24

~NO»

actual
num. of
rejecte.

(V)

expecte
rejecte.
percent

NN NN
[eleolo]eele)
o0 0 000
000000

NN
OQOOCO00
LI I I)
OOOO00

Prrrccnnfencccacaferacceccadmcaomn--d -

actual

reject.
percent
Prmcmmm=m—d

-
~n
o~
)
o
»

NN NN NS0
| N=2NO0S | =200

1| NOOOOO | SLWNOO

The table shows that the location results, dealing with the

eipectency of software development behavior, do have statistical

impact in several subcategoriese.

Process aspects have more impact

than product aspects'on the whole, but when tempered by

consideration of the distinction between “confirmatory"™ and
"exploratory"™ aspectsy, the study”s location reults bear strong

statistical impact for both process and product.

explained as the consequence of some true effect related to the
exgerimental treatments, rather than as a randcm phenomenon.

It is also clear from the table that the aisrersicn results,
dealiny with the predictability of software development tehavior,
have little statistical impact in general.
to the diminished power of statistical procedures used to test ‘or
dispersion differences, compounded by the small sample sizes
involved and the coarseness of many of the projramming aspects

themselvese.

the stucdy does not mean that the dispersion issue is unimportant
or undeserving of research attention,
tougher nut to crack"™ than the location issue.
dispersion results are still worth persuing, however, as possible
hints of where differedces might existy provided this disclaimer

regarding

their impact is heeded.

The lack of strong statistical impact

They a

This is due primarily

in th

but rather that it
The study”s

re better

is area of

is "a

TR-6E8 Section 1V LR

A Felaxeg 2

1=
[1*8

ffergntigtjcn View

As described in Section I1I, the research framework of
pocsible three-way comparison outcomes provided the tasis for
converting tnhne statistical results into the statistical
conclusionse This framework has tw0 inherent structural
characteristics that may be exgploited to make acdditional
observations regarding the statistical conclusions. These
structural characteristics and the supplemental views of the
conclusions that they afford are described here and in the next

sutsection.

Specifically, the first structural characteristic is that
each completely differentiated outcome is related to a specific
pair of partially differentiated outcomes, as shown in the lattice
of Diajram 2.1. For example, Al < AT < DT, a completely
Jifferentiated outcome, naturally weakens to either Al < AT = DT
or Ai = AT < DT, two partially differentiated outcomes.

€ach completely differentiated outcome consists of three
pairwise differences (AI < AT, AT < DT, Al < DT in the example),
while each partially differentiated outcome consists of only two
pairwise differences plus one pairwise egquality (AI < DT, Al < AT,
AT = DT and Al < DT, AT < 0T, AI = AT in the example). The
“outer' difference of the completely differentiated outcome
(AI < DT in the example) is common to both partially
differentiated outcomes, while each partially differentiated
outcome focuses attention on one of the two “inner"” differences
(Al < AT and AT < DT in the example) to the exclusion of the other
“inner'" gifference which is "relaxed" to an equality. Within a
statistical environment or model which places a premium on
cleiming differences instead of equalities, a partially
differentiated outcome is a safer statement, containing less
errcr=prone information than a compcletely differentiatea outccme.
Since these outcomes represent statistical conclusions, the same
data scores which support a completely differentiated outcome at a
certain critical Llevel also support each of the two relatec

T W W STV v Ny

TR=-¢CEE Section 1V 49

partially gifferentiated outcomes at lower critical levelse.

Thus, every completely differentiated conclusion may also be
considered as two (more significant) partially differentiated
conclusionsy each of these three conclusions having equal and
complete statistical legitimacye The "outer®” difference of a
completely differentiated conclusion is, of course, stronger than
either of its two "inner"™ differences; but the strengths of the
two "inner" differences (relative to each other) will vary in
accordance with the data scores anag indeed are reflected in the
sicnificance levels of the two corresponding partially
differentiated conclusions (relative to each other). Tables 4.7
and &.2 give the details of this "relaxed differentiation"
analysis for each of the completely differentiated conclusions
found in the study, and an English paraphrase appears in Agpendix
Ze ALL of the partially differentiated conclusions listed in
these tables should be added to those presented in Tables 2 and 3;
they deserve full consideration in any analysis or interpretation
of the study”s findings. However, in the case that one of a
partially differentiated pair is noticeably stronger than the
other, it is fair to consider only the stronger one for the
purpose of analysis or interpretation dealing primarily with
partially differentiated outcomes, since the study is mainly
concerned with the most pronounced difference affordea by each
aspect”s data scores.

A Rirectiopless Yiew

The second structural characteristic of the possible outcore
framework is that the outcomes may be classified into another
clcsely related set of directionless outcomes, as shown in the
lattice of Diagram 2.2. For example, Al < AT = DT and
AT = DT < Al, two directional partially differentiatea outcomes,
both correspond to AI # AT = DT, a nondirectional partially
differentiated outcome. ALl six of the directional completely
differentiated outcomes correspond to the single nondirectional

completely differentiated outcome AI # AT # DT,

TR-688 Table 4 50

Table 4.1 Relaxed Differentiation for Location Comparisons

2222322222222z R R R R R 22 R R 22 2 2 A A d A d X 22 2222222222222 2 2222

| completely | partially |
. | differentiated | differentiated |
programming aspect | conclusion | conclusions |
| |
|

|

|

|

| |

| comparison :critical| comparison :criticall
| | outcome ¢ level | outcome : level |
T i iz ey e R R R R R R R R A R R R AR AR RS2 2222222222222 2222222
| :
|
|
|
|
|
|

| : |
DT < Al < AT : 0.1848 DT < Al = AT

|

PROGRAM CHANGES | | : 0.0037 |
| H | DT = AI < AT : 0.1846 |

| : | 3 |

LINES | AT < DT < AT : 0.1194 | DT = AI < AT : 0.0617 |
| : | AI < AT = DT : 0.1132 |

| : | : |

| (SEG,GLOBAL) USAGE RELATIVE | AT < DT < AI : 0.1173 | AT < DT = AI : 0.0826 |
:PERCBNTAGES \ ENTRY : H { AT = DT < AI : 0.1111 {
| (SEG,GLOBAL) USAGE RELATIVE | AT < DT < Al ; 0.1232 | AT < DT = AI : 0.1132 |
| PERCENTAGES \ ENTRY \ MODIFIED | $ | AT = DT < AI : 0.1132 |
] : |

Py R e e e e e R R R R R i R L R R R R S IR s A R R i isddsd

Table 4.2 Relaxed Differentiation for Dispersion Comparisons

T T R T R R R A A A R I R R R i ddi it dddd)

completely | partially |
differentiated | differentiated |
programming aspsct conclusion | conclusions :

|

|

| |

| comparison :critical| comparison :criticall
outcome :t level | outcome : level |

P 222 3l IR ey e e T I X IR S T R R LS S AR A2 a 2 a2 d i ddddd

|

: |
DT < AI < AT DT < AI = AT

—— e e e . = e = = —— — ——

| :

MAX UNIQUE COMPILATIONS F.A.O. MODULE | : 0.0514 | : 0.0036 |
| H | DT = AI < AT : 0.0511 |
| : | : |

STATEMENT TYPE COUNTS \ RETURN | DT < AI < AT : 0.1398 | DT = AI < AT : 0.0035 |
| : | DT < AI = AT : 0.1395 |
| : |] |

(SEG,GLOBAL) POSSIBLE USAGE PAIRS | AI < DT < AT : 0.0523 | AI < AT = DT : 0.0207 |
| H | DT = AI < AT : 0.0511 |
| 3 | e |

| (SEG,GLOBAL) POSSIBLE USAGE | AT < DT < AT : 0.1727 | AI < AT = DT : 0.1167 |

|PAIRS \ NONENTRY \ UNMODIFIED | H | DT = AI < AT : 0.1561 ‘
| | : :
*

P 22232t R e e e R R R A L R R R X L X S AR L LR ddd il

Ak

i s

| ———— sttt M. — g S i s v S aran n - T . o< 0 2 el e M AL s — e

TR=5EZ Section 1V 51

By empghasizing only the otserved distinctions between the
grcugs, these directionless outcome categories focus attention on
the criginal research issue of how observable programming aspects k
reflect aifferences amony the three programmin, environments. In
particular, there are three nondirectional partially
differentiated outcomes (each of the form "“one group different
frcm the other two which are similar"), and it is noteworthy to]
observe just what set of programming aspects supports each of
these nasic distinctionss It is fairly easy to coalesce the
directional distinctions from Table 2 into the directionless
categories by eye, but 2 complete itemization of directionless 1
distinctions is provided in Appendix 4. It is interesting to note
that, for location comparisons, the directionless distinctions
secregate cleanly along the process versus product dicctomy line:
all of the product distinctions fall into the AI # AT = DT and
AT # DT = Al directionless categories, while all of the process

distinction fall into the DT # Al = AT directionless categorye.

Ingjvidual Highlights

The purpose of this concluding subsectior is simply to draw
| attention to what seem to be the "top ten" (or so) most noteworthy
conclusions from among the study”s objective results. These
corclusions are interesting individually, either because the
prczramming aspect itself has general appeal or because the

difference in behavior expectency or predictability is well

]
|
t

prcnounced (as indicated by a low critical significance level) in

the experimental sample data.

Noteworthy Llgcatior distinctions are mentioned below.
1« According to the DT < AI = AT outcome on the COMPUTER JCB
STEPS aspect, the disciplined teams used very noticeably

fewer computer job steps (i.e.y module compilations, program
executions, or miscellaneous job steps) than both the ad hoc
individuals and the ad hoc teams.

Z2e This same difference.was apparent in the total number of
module compilations, the number of unique (i.e., not an

!

R T TN N

TR-6E& Section 1V

7.

AN
"~

identical recompilation of a previously compiled module)
module compilations, the number of program executions, and
the number of essential job steps (i,e., unique module
compilations plus program executions), according to the

DT < AI = AT outcomes on the COMPUTER JOP STEPS\MODULE
COMPILATIONS, COMPUTER JOB STEPS\MODULE COMPILATIONS\UNIQUE;
COMPUTER JOB STEPS\PROGRAM EXECUTIONS, anc ESSENTIAL JOB
STEPS aspects, respectively.

According to the DT < AI = AT outcome on the PROGRAM CHANGES
aspect, the disciplined teams required fewer textual
revisions tc build and debug the software than the ad hoc
individuals and the ad hoc teams.

There was a definite trend fcr the ad hoc individuals to have
produced fewer total symbolic lines (includes comments,
compiler directives, statements, cdeclarations, etc.) than the
disciplined teams who produced fewer than the ad hoc teams,
according to the Al < DT < AT outcome on the LINES aspecte.

According to the Al < AT = DT outcome on the SEGMENTS aspect,
the ad hoc individuals corganized their software into
noticeably fewer routines (i.e., functions or procedures)
than either the ad hcc teams cr the disciplined teams.

The ad hoc individuals displayed a trend toward having a
gcreater number of statements per routine than did either the
ad hoc teams or the disciplined teams, according to the
AT = DT < Al outcome on the AVERAGE STATEMENTS PER SEGMENT
aspecte.

According to the DT = Al < AT cutcomes on the STATEMENT TYPE
COUNTS\VIF and STATEMENT TYPE PERCENTAGE\IF aspects, both the
ad hoc individuals anc the disciplined teams coded noticeatly
fewer IF statements than the ad hoc teams, in terms of bcth
total number and percentaze of total statements.

Accorcding to the DT = AI < AT cutcome on the DECISIONS aspect,
toth the ad hoc individuals and the disciplined teams tended
to code fewer decisions (ieeey IF, WHILE, or CASE statements)
than the ad hoc teamse.

Both the ad hoc teams and the disciplined teams declared a

noticeably lLarger number of data variables (i,e., scalars or

il il e a0 L e o i o g L

TR-688 Section 1V 5

i arrays of scalars) than the aa hoc indiviauals, according to
the ALl < AT = DT outcome on the DATA VARIABLES aspect.
10. - According to the AT = DT < Al outcome on the DATA VARIABLE

1 SCOPE PERCENTAGES\NONGLORAL\LOCAL aspect, the acd hoc
individuals had a larzer percentage of local variables
compared to the total number of declared aata variables than
either the ad hoc teams or the disciplinea teams.

11. There was a slight trend for both the ad hoc individuals and

the disciplined teams to have fewer potential data bindings
[Stevens, Myers, and Constantine 74] (i.e., occurrenceé ct
the situation where a glotal variable could te modified by
one segment and accessed by another due to the software”s
modularization) than the ad hoc teams, according to the

DT = Al < AT outcome on the (SEG,GLOBAL,SEG) DATA BINDINGS\
POSSIBLE aspecte.

Noteworthy gispersign distinctions are mentioned below.
E 1. There was a noticeatle difference in variability, with the
L disciplined teams less than the ad hoc individuals less than

the ad hoc teams, in the maximum number of unique

3 compilations for any one module, according to the
DT € Al < AT outcome on the MAX UNIQUE COMPILATIONS F.A.0.
MODULE asgecte.
4 2. The ad hoc individuals exhibited noticeably greater variation
5 j than either the ad hoc teams or the disciplined teams in the
{
|

number of miscellaneous job steps (i.e.y, auxiliary

comgilations or executions of something other than the final

software project), according to the AT = DT < Al outcome on

, the COMPUTER JO3 STEPS\MISCELLANEQUS aspect.

@ 2. According to the DT = Al < AT outcome on the AVERAGE SEGMENTS
PE® MODULE aspecty, the ad hoc indivicduals and the disciplined
teams both exhiopiteu noticeably less variation in the average
numcer of routines per module than the ad hoc teams.

e According to the DT = Al < AT cutcomes on the STATEMENT TYPE
CGUNTS\RETURN and STATEMENT TYPE PERCENTAGES\RETURN aspects,
the ad hoc teams showed rather noticeably jreater variability
in the number (both raw count and normalized percentage) of

T I 1 (- SR

TR-5E8 Section IV : YA

v
L]

6.

7

3e

9.

RETURN statements coced than both the disciplined teams and
the ad hoc indivigualse.

In the number of calls to programmer-defined routines, the ad
hoc individuals displayed noticeably greater variation than
both the ad hoc teams and the disciplined teams, according to
the AT = DT < Al cutcome on the INVOCATIONS\NONINTRINSIC
aspect.

According to the DT < AI = AT outcome on the DATA VARIAPLES
SCOPE PERCENTAGES\CLOEAL\NONENTRY*CDIFIED aspect, the
disciplined teams displayed noticeacly smaller variation than
either the ad hoc individuals or the ad hoc teams in the
percentage of commonplace (i.eesy Oradinary scope and modified
durin3 execution) olotal variables compared to the total
number of data variables declared.

The ad hoc individuals displayed noticeably less variatior in
the number of formal parameters passed by reference than both
the ad hoc teams and the disciplined teams, according to the
Al < AT = BT outcome on the DATA VARIABLE SCOPE COUNTS\
NONGLOBAL\PARAMETER\REFERENCE aspecte.

According to the AI < DT < AT outcome on the (SEG,GLOBAL)
POSSIBLE USAGE PAIPS aspecty, there was a noticeable
difference in variacility, «“ith the ad hoc individuals less
than the disciplinea teams less than the ad hoc teams, fcr
the total number of possiole segment-glotal usage pairs
(i.eey Ooccurrences of the situaticn where a global variatle
could be mogified or accessed by a segment).

According to the DT = Al < AT cutcome on the (SEG,GLOBAL,SEG)
DATA BINCINGS\POSSI5SLE aspect, the ad hoc teams tended toward
greater variability than either the ad hoc individuals or the

disciplined teams in the number of potential data bindincse.

TR=4E£2 Section V 5%

V. Interpretive Results

This section reports the interpretive results of the study,

namely the research interpretaticns based on the conclusions
presentea in Section IVe. The tone of discussion here is purposely
somewhdat subjective and opinionated, since the study”s most
important results are derived from interpreting the experiment”s
immediate findings in view of the study”s overall goals. These
interpretations also express the researchers” own estimatior of
the study“s implications and general import according to their

professional intuitions about programming and software.

The interpretations presented here are neither exhaustive nor
uniguees They only touch ugon certain overall issues and generally
avoid attaching meaning to or giving explanation for individual
asfects or outcomes. It is anticigated that the reader and other
researchers might formulate additional or alternative

interpretations of the study”s factual findings, using their cwn

intuitive judgments.

Two distinct sets of research interpretations are discussed
in the remainder of this sectione The first set states general
trends in the conclusions according to the basic suppositions of
the study. The second set states general trenas in the
conclusions based cn classifications which reflect certain
atstract programming notions (e.ge., cOost, modularity, data

organizations, etc.)e.

Agcerdirg 3o Easic Sveeesitigns:

The study”s basic suppositions are a set of the simplest a
priori expectations (or "hypotheses™) for the outcomes of location
anc cispersion comparisons on process and product aspects. They
are stated in the following table:

ol bRt

TR-628 Section V 56

3asic Suppositions l on Location and Dispersion |
X Comparisons

..... - - - - - - " - - - - - - - - - -

for Process Aspects | DT < Al = AT |

- - . - - - . . e S G e .. e e - -

for Product Aspects | 0T = Al < AT or AT < DT = Al |

BT s S -4

The basic suppositions are founded upon certain general

[. beliefs regarding software development, which had been formulated 4

by the researchers prior to conducting the experiment. The :

i principal peliefs are that

(a) methodological discipline is the key influence on the
general efficiency of the process itself,

(b)) the disciplined methodology reduces the cost and
complexity of the process and enhances the

predictability of the process as well,
(c) the preferred direction of both location and dispersion

differences on process aspects is clear and undebatable,

due to the tangibleness of the process aspects

themselves and the direct applicability of expected
values and variations in terms of average cost estimates

i and tightness of cost estimates,

En (3) "mental cohesiveness"™ (or conceptual integrity [(Brooks

v 75, ppe 41-501) is the key influence on the general

; quality of the product itself,

! (e) a programming team is naturally burdened (relative to an

‘ individual programmer) by the organizational overhead

' : and risk of error-prone misunderstanding inherent in

‘ coordinating and interfacing the thoughts and efforts of
those on the team,

(f) the disciplined methodologcy induces an effective mental
cohesiveness, enabling a programming team to behave more
like an indivicual programmer with respect to conceptual
control over the program, its design, its structure,
etcey Cecause of the discipline”s antiregressive,

; complexity-controlling [(Eelady and Lehman 76; p. 24°%5)
eftfect that compensates for the inherent organizational
ocverhead of a teamy, and

(;) the preferred direction of both location and dispersion

|
b |

T

emiamn

TR-688 Section V

differences on product aspects is not always clear
(occasionally subject to diverging viewpoints), due tc
the intangibleness of many of the product aspects and a
general lack of understanding regarding the implication
of cispersion comparisons themselves for product

aspects.

Against the background of these general beliefs and basic
sugpositions, each possible comparison outcome takes on a new
meaning, depending on whether it would substantiate or contravene
the general beliefse For process aspects,

(1) outccme DT < Al = AT, the supposition itself, is directly

supportive of the beliefs;

(Z) outcomes DT < Al < AT and OT < AT < Al, which are
completely differentiated variations of the
supposition®s main theme, are indirectly supportive of
the beliefs, especially when DT < AI = AT is the
stronger of the two corresponding partially
differentiated outconmes;

(3) outcome A? AT = DT may discredit the beliefs, or it may
be considered neutral for anyone of several possibtle
reasons [(a) the critical level for a non-null outccme
is just not lcw enough, so the aspect defau’'ts to the
null outcome; (b) the aspect simply reflects something
characteristic of the application itself (or another

factor common to all the groups in the experiment); or

(c) the aspect actually measures something fundamental
to the software development phenomenon in general and
would always result in the null outcomel; and

(4) all other outcomes discredit the teliefs.

For product aspects,

(1) outcomes AT # DT = Al TAT < DT = Al, DT = AI < AT]), the
supposition itself, are airectly suoportive of the
beliefs;

(2) outcomes Al ¢ DT < AT and AT < DT < Al, which may be
considered as approximations of the suppositions (DT is
distinct from AT but falls short of Al, due to lack of

TR-6EE Section V SR

experience or maturity in the disciplined methodoloogy),
are indirectly supportive of the beliefs, espgecially
when DT = Al < AT and AT < DT = Al (respectively) are
the stronger of the twc corresponding partially
differentiated outcomes;

(3) outcome Al = AT = DT may discredit the beliefs, or it ﬁay
ne considered neutral for anyone of several possible
reasons [(a) the critical Level for a non-null outcome
is just not low enough, so the aspect defaults to the
null outcome; (b) the aspect simply reflects something
characteristic of the application itself (or another
factor common to all the groups in the experiment); (c)
the aspect actually measures something fundamental to
the software development phenomenon in general and would
always result in the null outcome; or (d) several of the
study“s hit-and-miss collection of "exploratory®™ product
aspects are simply duds and may be ignored as useless
software measures]; and

(4) all other outcomes discredit one or more of the beliefs,

Thus the interpretation of the study”s findings according to
the basic suppositions consists simply of a general assessment of
how well the research conclusions have borne out the basic
suppositions and how well the experimental evidence substantiates
the general beliefss On the whole, the study“s findings
positively sugport the general beliefs presented above, although a
few conclusions exist which are directly inconsistent with the
suppositions or difficult to allay individually.

Supgport for the beliefs was relatively stronger on process
aspects than on groduct aspectsy, and in location comparisons than
in dispersion comparisonss Overwhelming support came in the
category of lLocation comparisons on process aspects in which the
research conclusions are distinguished by extremely low critical
Levels and by near unanimity with the basic supgositions In the
category of dispersion comparisons on process aspects, only two
outcomes indicated any distinction among the groups: one aspect

TR-6&88 Section V

suppcrted the study”s beliefs and one aspect showed an explainable
exception to theme. Fairly strong support also came in the
category of location comparisons on product aspects for which the
only negative evidence (cesides the neutral AI = AT = DT
conclusions) appeared in the form of several AI # AT = DT
conclusions. They indicate some areas in which the disciplined
methodology was apparently ineffective in modifying a team”s
behavior toward that of an individual, probably due to a lack of
fully developed training/experience with the methocologye.
Comparatively weaker support for the study“s beliefs was recorded
in the category of cispersion comparisons on product aspectse.
Althouz;h the suppositions were borne out in a number of the
conclusions, there were also several distinctions of various forms
which contravene the suppositionse.

Thus, according to this interpretation, the study”s findings
strongly substantiate the claims that
(a) methodological discipline is the key influence on the
general efficiency of the scoftware development process,
and that
(b) the disciplined methodology significantly reduces the
material costs of software development,
The claims that
(a) mental cohesiveness is the key influence on the general
quality of the software development product, that
(o) an ad hoc team is mentaliy burdened by organizational
overhead compared to an individual, and that
(c) the disciplined methodology offsets the mental turden of
organizational overhead and enables a team to behave
more like an individual relative to the product itself,
are mocerately substantiated by the study”s findings, with

particularly mixed evicence for dispersion comparisons on groduct

3asgectse

1t shouyld be noteg that there is a simpler, better-supportec
interpretive model for the location results alone. With the
beliefs that a disciplined methodology provides for the minimum

-

TR-6828 Section V 6N

process cost and results in a product which in some aspects
approximates the product of an individual and at werst
approximates the product developed by an ad hoc team, the
sugcgositions are DT < AI,AT with respect to process and

Al < PT £ AT or AT £ DT £ Al with respect to producte. The study”s

fingings support these suppositions without exception.

Agccrding to Programming Aspect Classification:

Before presenting the interpretations according to a
classification of the programming aspects, an explanation is in
orcer recarding this classification and its motivation. It is
desirable to make general interpretations in view of the way
certain general programming issues are reflected among the
individual programming aspects. For this purpose, the aspects
considered in this study were grouged into (so-called) programming
aspect classess Each class consists of aspects which are related
by some common feature (for example, all aspects relating to the
prcsram“s statements, statement tyres, statement nesting, etc.),
anc the classes are not necessarily disjoint (i.eey a given aspect
may be included in two or more classes)es A unique higher-level
programming issue (in the example, control structure organization)

is associated with each classe

The programming aspects of this study were organized into a
hierarchy of nine aspect classes (with about 10X overlap overall),
outlined as follows:

Higher-level Programming Issue:

bevelopment Process Eff1c1ency
Effaort (Jobt Steps) .
. Errors (Proaram Changes) .
Final Product ual1ty
Gross Size e o e o © o o o o © o o
Control~- Construct Structure
Data Variable Orcanization « o o o o
odularit
Packaging Structure e o o o o o o
Invocation Organization .« « o o
Inter-Segment Communication
Via Parameters . @ e o o o o o
Via Global Var1ables s '8 B

Ta)
-
(-]
("]
(7]

L 1)

<rt 4
—

-
—

HE €< Cribt

24 A

The individual aspects comprising each class, together with the

corresponding conclusions, are listed by classes in Tables .1

TR-688 Table 5

Table 5.1 Conclusions for Class I, Effort (Job Steps)

L R R A A A A A A A e IR s 22 s 2ddddd

| | " location | dispersion
| programming aspect | comparison :criticall| comparison :criticall
| outcome : level | outcome : level |
; Iy I e R Rl A R A R i A i R X S R R 2222222222222 2222222222
COMPUTER JOB STEPS	DT < AI = AT : 0.0036	= = H
MODULE COMPILATIONS	DT < AI = AT : 0.0223	= = :
UNIQUE	DT < Al = AT : 0.0110	= = H
IDENTICAL	= = :	= = :
PROGRAM EXECUTIONS	DT < AI = AT : 0.0221	= = H
MISCELLANEOUS : DT < AI = AT : 0.1445	AT = DT < Al : 0.0775 :	
:	:	
ESSENTIAL JOB STEPS	DT < AI = AT : 0.0037	= = g
	:	E
AVERAGE UNIQUE COMPILATIONS PER MODULE	DT < AI = AT : 0.0883	= = : :

|MAX UNIQUE COMPILATIONS F.A.O. MODULE | DT < AI = AT : 0.1180 | DT < AI < AT :& .0514

."Qt'tttt.tt'ﬁtittiitttttiﬁ.t.it'tt.tt.i't.tii*i.'ittt.ttt.ﬁttt‘t.t't.t."ti'...tl't.tt.t

alternative conclusions (from Table 4) showing relaxed differentiation:
(correspondence indicated via the & symbol)

£ ttttti‘tttt'tttttf'ttQtttttt.tttitﬁtﬁ"ﬁt.ttttt.tttttttt..*tttttttﬁttttttttttt...tttttt.tt

‘ | I " | DT < AI = AT :& .0036 |

! | | DT = AI < AT :& .0511 |
4 I T I I I Y R R P Y 2 R 2 XTSRS RSS2SR XTSRS 2222222 2 2 2 2 2)

Table 5.2 Conclusions for Class II, Errors (Program Changes)

I 2 22 R e e R L R I A SR ALl il

! | location | dispersion

| programming aspect | comparison :critical| comparison :criticall

| | outcome : 1level | outcome : level |

LRy I R R R R 2222222222 X X222 2RSS S22 222222 2222 222 3 J
: | PROGRAM CHANGES | DT < AI < AT :& .1848 | = - H |

AR AR AR R AR AR AR AR AR AR AN AR R R AR R AR R R R R AR RA R AR AR R R RS R PR IR R AN IR I AN IR

; alternative conclusions (from Table 4) showing relaxed differentiation:

} (correspondence indicated via the & symbol)
i 2 i R AR Rt s s
E | I | DT < Al = AT :& .0037 | [
| DT = AI < AT :& .1846 | |

E { AR AR AR R RN R R A IR RN R R AR R R RN R RN AN AN RN R AR AR R AR AN R AN R AR AR R AR R AR R AR AR AR R AR RS

TR-688 Table 5 continued 62

Table 5.3 Conclusions for Class III, Gross Size

I R R A R R A R R Iy R R R e R e a2 222222

| | location | dispersion
| programming aspect | comparison :critical| comparison :criticall
: : | outcome : level | outcome : level |
T I R R R X R R R R R R e T X e R R R X Z IR 22 223
MODULES	= = :	= = :
AVERAGE SEGMENTS PER MODULE { - = H	DT = AI < AT : 0.0218	
AVERAGE GLOBAL VARIABLES PER MODULE	L] = s	= = H
	:	2
SEGMENTS	AI < AT = DT : 0.0634	= L H
AVERAGE STATEMENTS PER SEGMENT	AT = DT < AI : 0.1706	= = s
AVERAGE NONGLOBAL VARIABLES PER SEGMENT	= =]	L = H
PARAMETER	AT < AT = DT : 0.1748	- = s
LOCAL ! = = :	= - 3	
	s	:
DATA VARIABLES	AI < AT = DT : 0.0698	= = H
DATA VARIABLE SCOPE COUNTS \ GLOBAL	AT < AT = DT : 0.1476	AI = AT < DT : 0.1241
DATA VARIABLE SCOPE COUNTS \ NONGLOBAL	= = H	= = H [
PARAMETER	AT < AT = DT : 0.1271	AI = AT < DT : 0.1061
LOCAL	= = :	= @ H
	:	:
LINES	AI < DT < AT :& .1194	= = s
STATEMENTS	= = H	AT < DT = AI : 0.1954
JAVERAGE TOKENS PER STATEMENT : = = s = Al = AT < DT : 0.1061 :		
: s		
TOKENS	= = H = = :	

AR R AR R R RN RS ER N AR ARSI RN NI AN R E RN NN R R AN R R R RN AR RN ARG PN N NI R NSO RAR O RO TR TER

__ alternative conclusions (from Table 4) showing relaxed differentiation:
(correspondence indicated via the & symbol)
L2 s R R e i I I R i R I e R S XYY S XSRS SRR X222 2 22222222223 d)
| | DT = AI < AT :& .0617 | |
| AT < AT = DT :§ .1132 | |

AR RN R AR R RN AR RN RN RN AR AN R A NI RECERN RN N NN AR A R AR AR RN RANCC RN RN R NI RR R AR AT AR RES

63

TR-688 Table 5 continued

Table 5.4 Conclusions for Class IV, Control-Construct Structure

I A R R A A R s e R X R i S R R Rl dsds

| | location | dispersion |
| programming aspect | compsrison :criticall comparison scriticall
| | outcome : level | outcome : level |
2 e R R R A e e e e e e A e R 2 i aazl]
| STATEMENTS | - = s { AT < DT = AI : 0.1954 ;
| | : :
| STATEMENT TYPE COUNTS : | : | 3 |
| = | = - T | = - : | !
| IF | DT = AI < AT : 0.0780 | = = H I -
| CASE | = = H | = = : | .
WHILE	= = t	= = H
EXIT	. = :	- = :
(PROC) CALL	= - :	DT < AI = AT : 0.0325
NONINTRINSIC	- = H	DT < AZ = AT : 0.1862
INTRINSIC	DT = AI < AT : 0.1732	- = H {
: RETURN l DT = AI < AT : 0.0860 : DT < &I < AT :& .1398 :		
: :		
STATEMENT TYPE PERCENTAGES :	H	- H
= .	- - - s	= = :
1F	DT = AI < AT : 0.1069	= = :
CASE	- - : { = = :	
WHILE	= = H	= = H
EXIT	- = :	= = :
(PROC) CALL { - - H	= = H	
NCNINTRINSIC	- - H	= = H
INTRINSIC	- =]	= = H
{ RETURN { = - 2 : DT = AI < AT : 0.0401 :		
= -t mmeene]		
:AVBRAGB STATEMENT NESTING LEVE : - - t I - - H =		
: :		
DECISIONS	DT = AI < AT : 0.1468	= - 3 : :
	- :	:
PUNCTION CALLS	= - H	= = H
NONINTRINSIC	= = H	= = H
INTRINSIC	= = :	= = 3

P I I R R R R i R i I eI i it isdsd)

alternative conclusions (from Table 4) showing relaxed differenciation:
(correspondence indicated via the & symbol)
I R I 222222222 2 a2 a2 e A 2 2 R A 2 R A A X X R X Ry e R R R R R R T AT X iR X222 2222222222222 223223
| | | DT = AI < AT :& .0035 |
| | | DT < AI = AT :& .1395 |
2 e I e R R R R R R X R R R X R R R A A R R d i s e R a2 ad it d2at 222z s)

m—ﬁ

TR-688 Table 5 continued 64

Table 5.5 Conclusions for Class V, Data Variable Organization

I R R R A Y R e R R i eI ss)

| | location | dispersion |
| prcgramming aspect | comparison :criticall comparison :criticall
i | : | outcome : level | outcome : level |

1 [2 R R R R s T R R R R R R 2R 222 221 2 3 g T X 2 a2 A e I e i 22

|DATA VARIABLES | AT < AT = DT : 0.0698 | = =
| : |
f |IDATA VARIABLE SCOPE COUNTS :
3 GLOBAL
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED
NONGLOBAL
PARAMETER
VALUE
REFERENCE
LOCAL

Al DT

>
[]

3

0.1476 | AI = AT

Al 0.1614

Al 0.1271 AT 0.1061

»
-3

DT Al

Al < AT = DT : 0.0199

NERARRARRRRRRA
»
)
NARRE RN RRERNNDN
RERAR IR AN RROEA

DATA VARIABLE SCOPE PERCENTAGES :
GLOBAL
ENTRY
MODIFIED
UNMODIFIED
NONENTRY

|
|
|
|
|
I
|
I
|
|
|
|
|
|
|
|
I DT
|
)
|

: |

4 | MODIFIED
|
|
I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
*

Al = AT 0.0750

Al = AT : 0.0218
UNMODIFIED
MODIFIED
UNMODIFIED
NONGLOBAL
PARAMETER
VALUE
REFERENCE

LOCAL

Al
Al
Al
Al

AT
AT
AT
AT

0.0750
0.0557
0.0943
0.1529

Al < AT = DT : 0.1507 DT

DT
DT

Re AR EERERARN AN
ANBRARNRRNER NN
RAR RN RRRARNNERD
REAAAREIR AP RANA

AT = DT < AI 0.1090

AVERAGE GLOBAL VARIABLES PER MODULE
ENTRY
NONENTRY
MODIFIED
UNMODIFIED

S Ll s

DT = AI < AT : 0.1100

sennn
sennDn
LN B B I]
AR RN

AVERAGE NONGLOBAL VARIABLES PER SEGMENT
PARAMETER
LOCAL

=
Al < AT = DT : 0.1748
=

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

H
1
]
H
3
H
H
H
H
H
H
H
$
H
H
$
]
H
3
]
3
H
H
1
H
$
H
$
H
H
H
b
H
H
H
H
H
]

99 96 50 00 95 06 90 00 G0 S0 00 00 09 00 90 90 00 00 00 0 G0 4o 9 ee 0 P 06 40 00 00 G0 06 o w0 O8 e o SO 0 o 00 S0 oo

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
I
|
{
!
|
|
|
|
|
|
|
I
[
|
|
|
|
|
|
|
|
|
|
*

AR R AR R AR R RN AR AN R AR NN RN AR RN AN AR AN AR NN RN AP R RN R AR RN I RANER N AR R A AR AARR RN ORI R A RS

Ll et

TR-688 Table 5 continued 65

Table 5.6 Conclusions for Class VI, Packaging Structure

LR R X R R R R A A A A A e R R R R R R R R R e el dd

| | location | dispersion |
| programming aspect | comparison :criticall comparison :criticall
3 | outcome : level | outcome : level |

I R R R R A e e e e R R X R R R R R R R ST AR TSRS 2 22 2 42
:HODULBS | = = H | = s H |
| : : |

| AVERAGE SEGMENTS PER MODULE | - - H | DT = AI < AT : 0.0218 |
{AVERAGE GLOBAL VARIABLES PER MODULE | = = H | - - H |
	s	3
SEGMENTS	AI < AT = DT : 0.0634	- - H
SEGMENT TYPE COUNTS \ PUNCTION	- L] H	- L] H
SEGMENT TYPE COUNTS \ PROCEDURE	= - :	= - :
SEGMENT TYPE PERCENTAGES \ FUNCTION	- ‘= 3	- ~ : [
SEGMENT TYPE PERCENTAGES \ PROCEDURE	= = H	- L]
	:	:
AVERAGE STATEMENTS PER SEGMENT	AT = DT < AXI : 0.1706	- - H
AVERAGE NONGLOBAL VARIABLES PER SEGMENT	= - :	- = H
PARAMETER	AI < AT = DT : 0.1748	- = H
LOCAL	= - :	= = 3
*

.i"it.t.'tttittt..ttt'..."......""...t."Q..'.....ti'ttttt"tt....t"tt'."..."tt"t

Table 5.7 Conclusions for Class VII, Invoca:.on Jrganization

LR A R dd R R A i A e R R R R AR i i dsddddsy
| | location | dispersion

| programming aspect | comparison :critical| comparison :criticall
| | outcome : level | outcome : level
L2l R R T T R e RS R e aa e i i il
INVOCATIONS	= = 3	AT = DT < AI : 0.0206
FUNCTION	= = H	- = $
NONINTRINSIC	= - H	= = :
INTRINSIC	= = 3	- = :
PROCEDURE	- = H	DT ¢ Al = AT : 0.0325
NONINTRINSIC	= - H	DT < Al = AT : 0.1862
INTRINSIC	DT = AI < AT : 0.1732	- - :
NONINTRINSIC	= = H	AT = DT < AI : 0.0510
: INTRINSIC | DT = AI < AT : 0.0435 : = = g :

| H H
AVG INVOCATIONS PER (CALLING) SEGMENT	= =]	= = :
FUNCTION	- - H	= = :
NONINTRINSIC	= = 3	= = H
INTRINSIC	- - s	- - ¢
PROCEDURE	= - s	- - s
NONINTRINSIC I - - :	- - :	
INTRINSIC] - - :	DT < Al = AT : 0.0653	
NONINTRINSIC	AT = DT < AI : 0.1699	- = :
: INTRINSIC	= = :	= - : :
:	:	

AVG INVOCATIONS PER (CALLED) SEGMENT	AT = DT < AI : 0.1699	- - :
FUNCTION	AT = DT < AI : 0.1936	AT < DT = AI : 0.1411
PROCEDURE	= = :	= - H
L i i ey T T e R A A e A P AR R R SRR a2 ddsd]

TR-688 Table 5 continued 66

Table 5.8 Conclusions for Class VIII, Communication via Parameters

T I R A i A A R i R T T e Iy

	location	dispersion	
programming aspect	comparison :criticall comparison :criticall		
:	outcome : level	outcome : level	

I e R e R I R e i i e e e e ys |

IDATA VARIABLE SCOPE COUNTS\NONGLOBAL : | :
0.1271 | AI = AT < DT : 0.1061

| PARAMETER Al < AT = DT

VALUE = L4 | = - s
REFERENCE = - | AI < AT = DT : 0.0199

| s

AVG NONGLOBAL VARIABLES PER SEGMENT : = = | = = H

PARAMETER Al < AT = DT 0.1748 | - - H

| s

|

PARAMETER PASSAGE TYPE PERCENTAGES : :
VALUE = - | AT < AT = DT : 0.1606

REPERENCE | = = : | AI < AT = DT : 0.1606
L T T T T e T

|
|
|
|
|
|
|
|
]
|
*

|
|
|
|
|
|
|
|
|
*

N PR T

il .

TR-688 Table 5 continued 67

Table 5.9 Conclusions for Class IX, Communication via Global Variables

LR R R R R A A AR A R A A A i R R i s R s i i ddddd)

|) location | dispersion |
| programming aspect | comparison :critical| comparison :criticall
| | outcome : level | outcome : level |
I R R R R R R A e i R e e R I X A P R X R ST 22 2222
|DATA VARIABLE SCOPE COUNTS \ GLOBAL | AT < AT = DT : 0.1476 | Al = AT < DT : 0.1241 |
| ENTRY = - H | = = :
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED

AN
"N NN
LI BN BN B BN B
(I B B BN B B)

AI < AT = DT : 0.1614

AVERAGE GLOBAL VARIABLES PER MODULE
ENTRY
NONENTRY
MODIFIED
UNMODIFIED

DT = AI < AT : 0.1100

AN
annND
[B BN BN N)
AR AR

(SEG,GLOBAL) ACTUAL USAGE PAIRS
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFIED
UNMODIFIED

0.1061

AR B RNRD
(I B B B B BN B BN]

AT < DT = Al

|

|

|

|

|

|

|

|

|

|

|

|

)

|

|

!

|

|

|

|

|

|

E

| (SEG,GLOBAL) POSSIBLE USAGE PAIRS Al < AT = DT DT
| ENTRY
; MODIFIED
|
|
|
|
|
!
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
*

UNMODIFIED
NONENTRY

MODIFIED

UNMODIFIED
MODIFIED
UNMODIFIED

0.0786
0.0510
e .1727

Al
DT
Al

AT
Al
DT

DT
AT
AT

NN RR A
LN B B B
e ARARNE A
S AAR NN

(SEG,GLOBAL) USAGE RELATIVE PERCENTAGES
ENTRY
MODIFIED
UNMODIFIED
NONENTRY
MODIFIED
UNMODIFIED
MODIFPIED
UNMODIFIED

AT
AT

Al
Al

¢ .1173
$.1232

AT < DT = AI : 0.1546

AR EAADN
SR saRAAnDS
LB B B B BN B B BN
AANENRBRDN

(SEG,GLOBAL,SEG) DATA BINDINGS :
ACTUAL ™
SUBFUNCTIONAL -
INDEPENDENT Al ¢ AT = DT
POSSIBLE DT = AI ¢ AT : 0.1861 | DT = AI < AT
RELATIVE PERCENTAGE | - - : | - = :

L A L L T e S a R i aa il

0 04 90 90 00 90 00 00 G0 G0 G0 4 G0 S5 P60 6 00 00 P G S0 00 G0 G0 % 00 00 O G0 OO 00 G0 C0 G0 G0 00 S0 00 00 00 0 G0 S0 00 0 G eo S0

0.1963

H
H
H
H
:
H
H
H
H
H
:
H
H
H
AT :& .0523
H
H
H
H
&
H
:
H
H
H
H
4
H
: 0.1529

—— e —— S — S i S O S — — — — — — — — — . . Sy S D G S S S— . G S T — — — —— —— . S . w—

|
|
|
|
|
(
|
J
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
0.1227 : Al
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LU I]
nANDN

-
-
-
<

|
|
|
|
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
(
|
!
*

alternative conclusions (from Table 4) showing relaxed differentiation:
(correspondence indicated via the &, @€, ¢, and § symbols)
L T R Y R R A T SRS ST 22222223 dd)
	AI ¢ AT = DT :& .0207
	DT = AI < AT :& .0511
AT < DT = AI :4 .08626	
AT = DT < AI :¢ .1111	
	Al < AT = DT :@ .1167
	DT = AI < AT :@ .1561
AT < DT = AI :$.1132	
AT = DT < AI :$.1132	

AR RN R R R R R AR AR RN AR RN R AR AN R R RN R AR AN O RN R R RGN AR RN R AN RO R R AR R R AR T RO EE R AR R RS

|
|
(
I
|
I
|
|
*

TR-54& Section V 69

throucn 5.9. For each aspect class, it is interesting to jointly
interpret the ingividual outcomes in an overall manner in order to
see something cf how these higher-level issues are affected by the

factors of team size and methodological discipline.

Class I:

Wwithin Class I (process aspects dealing with COMPUTER JOB
STEPS), there is strong evidence of an important difference among
the srougsy in favor of the disciplined methcdology, with respect
to averaze development costse As a classy these aspects directly
reflect the frequency of computer system operations (i.e., module
compilaticns and test program executions) during development.
They are one possitle way of measuring machine costs, in units of
basic cperations rather than monetary charges. Assuming each
compguter system operation involves a certain expenditure of the
prograamer”s time and effort (e.5ey effective terminal contact,
test result evaluation), these aspects indirectly reflect human
costs of development (at least that portion not devoted to desicon

40rKk) o

Tne strength of the evidence supporting a difference with
resgect to location comparisons within this class is based on both
(a) the near unanimity [6 out cf § aspects] of the DT < Al = AT
cutcome and (b) the very low critical levels [<.025 for S aspects]
involved. 1Indeea, the single exception among the location
comparisons (AI = AT = DT on COMPUTER JOB STEPS\MODULE
COMPILATIONSVIDENTICAL) is readily exclained as a direct
consequence of the fact that all teams mace essentially similar
usa; e (or nonuse, in this case, since identical compilations were
not uncommon) of the on-Line storace capatility (for saving
relocatacle modules ana thus avoiding identical recompilaticns).,
This was expectea since all teams had been provided with igentical
stcrage cagatility, but «ithout any training or urging to use it.
The conclusions c¢cn location comparisons within this class are
intergretea as demonstrating that

employment of the disciplined methocology by a

TR-0¢ Section V 69

3
5
|
|

prosramming team reduces the average costs, both machine
and human, of software development, relative to both
indivicual projrammers and programming teams not
employing the methodologye.

gxemination of the raw data scores themselves indicates the
magnitude of this reduction to be on the order of 2 to 1 (i.e.,
5S0%) or better.

with respect to dispersion comparisons within this class, the :

T

evicence generally failea to make any distinctions among the
grocugs [AI = AT = DT on 7 out of 9 aspectsle These null
cornclusions in Jdisgersion comparisons are interpreted as
demonstrating that

variability of software development costs, especially
: machine costs, is relatively insensitive to the factors
of programming team size and degree of methodological
: discipline.
The two exceptions on individual process &spects both deserve
menticne The COMPUTER JOB STEPS\MISCELLANEOUS aspect showed a
AT = DT < Al dispersion aistinction among the jroups, reflecting
the wider-spread behavior (as expected) of individual programmers

relative to programming teams in the area of building on-line

tools to indirectly sugcport software development (e.ge.,
stanc-alone module drivers, one-shot auxiliary computations, table
generators, unanticipated debugging stubs, etc.)e The MAX UNIQUE
COMPILATIONS F.A,0. MODULE aspect showed a DT < Al = AT dispersion
distinction among the groups at an extremely low critical level

{<.C0S], reflecting the lower variation (increased predictability)
1 of the disciplined teams relative to the ad hoc teams and
incividuals in terms of "“worst case" compilation costs for any one
mocule. The additional Al < AT gistinction for this compariscn is
clearly attributable to the fact that several teams in group AT
builc monclithic single-module systems, yielding rather inflated

ra« scores for this asgect.,

<
P
A
y;‘-.

TR-¢82% Section V 7

within Class II (the process aspect PROGPAM CHANGES), there
is strony evidence of an important difference among the groups,
agsain in favor of the disciplined methodology, with respect to
average number of errors encountered during implementation.
Appencdix 1 contains a detailed explanation of how program changes
are countedes This aspect directly reflects the amount of textual
revision to the source code during (postdesign) development.
Claimino that textual revisions are generally necessitated bty
errors encountered while tuilding, testing, and debugging
software, recent research (Dunsmore and Gannon 77] has confirmed a
hi:n (rank order) correlation ¢f total program changes (as counted
automatically according to a sgecific aljorithm) with total error
occurrences (as tabulated manually from exhaustive scrutiny of
source code and test results) during software implementation.
This ascect is thus a reasonable measure of the relative numter of
programming errors encountered outside of desiyn work. Assuming
2ach textual revision involves 2 certain expenditure of the
grogrammer”s effort (e.gey planning the revision, on-lLine editinrg
of source code), this aspect indirectly reflects the level of

human effort devoted to implementation.

with respect tc location comparisony, the strength of the
evidence supporting a difference among the groups is based on the
very low critical level [<.C0S] for the DT < AI = AT outcome. The
adcitional trend toward AI < AT is much less pronounced in the
datse The interpretation is that
the disciplined methcdology effectively reduced the
average number of errors encountered during software
implementatione.
This was expected since the methodclogy purposely emphasizes the
criticality of the cdesign phase and subjects the software design
(ccde) to through reading and review prior to coding (key=-in or
testin;), enhancing error detection anc correction prior to

inclementation (testing).

TR-¢é? Section V 71

Wwith rescect to dispersion comparison, no distinction among
the groups was apparent, with the interpretation that
variability in the number of errors encountered during
implementation was essentially uniform across all three

programming environments considerede.
Class IIl:

Within Class III (product aspects dealing with the gross size
of the software at various hierarchical levels), there is evidence
of certain consistent differences among the groups with respect to
both average size and variability of sizee As a class, these
aspgects directly reflect the number of objects and the average
nurter of component (sut)objects per object, according to the
hierarchical organizatiun (imposed by the programming language) of
the software itself into objects such as modules, segments, data
variables, Lines, statements, anao tokens.

With respect to location comparisons within this class, the
non-null conclusions [7 out of 17 aspects) are nearly unanimous (S
out of 71 in the AI < AT = DT outcome. The interpretation is that
individuals tend to produce software which is smaller (in certain
ways) on the average than that procduced by.teams. It is unclear
whether such spareness of expressiony, primarily in segments,
glcoal variablesy, and formal parameters, is advantageous or nct.
The two non-null exceptions to this Al < AT = DT trend deserve
mention, since the one is only nominally exceptional and actually
supportive of the tendency upon closer inspection, while the other
incicates a size aspect in which the disciplined methodology
enacled programming teams to break out of the pattern of
distinction from individual programmers. The AT = DT < Al outcome
on AVERAGE STATEMENTS PER SEGMENT is a simple ccnsequence of the
outcome for the number uf STATEMENTS (AI = AT = DT) and the
outcome for the number of SEGMENTS (AI < AT = pT) and it still
fits the overall pattern of Al # AT = DT on location differences
on size aspectses On the LINES aspect, the DT = Al < AT
distinction breaks the pattern since 0T is associated with Al and

> AN ST SR

T T

R TE T RT. T

TR-€88 3Section V 72

not with AT. Since the number of statements was roughly the sare
for all three grougs, this difference must be due mainly to the
stylistic manner of arranging the source code (which was
frece-format with respect to line boundaries), to the amount cf
3Jocumentation comments within the source code, and to the number

of Lines taken up in Jata variable declarations.

Wwith respect to dispersion comparisons within this class, the
few aspects which do indicate any distinction among the groups [S
cut of 17 aspects] seem to concur on the Al = AT < DT outcome.
This pattern, which associates increased variation in certain size
asgects with the disciplined methodclogy, is somewhat surprising
anc lacks an intuitive explanation in terms of the experimental
factors. The exception DT = Al < AT on AVERAGE SEGMENTS PER
MOCLJLE is really an exagygeraticn due to the fact of several AT
teams implementing monolithic single-module systems, as mentioned
atcve.s The exception AT < DT = AI on STATEMENTS is only a very
slijht trend, reflecting the fact that the AT products rather

consistently contained the largest numbers of statements.

One overall otservation for Class I1I is that while certain
distinctions did consistently appear (especially for location but
also for Jdispersion comparisons) at the middle levels of the
hierarchical scale [segments, data variaoles, lLines, and
statements], no ogistinctions appeared at either the highest
[rcdules] or lowest [tokens] levels of size. The null conclusions
for size in modules and average module size seem attributable to
the fact that particular programming tasks or application domains
often have certain standard apgroaches at the topmost conceptual
levels which strongly influence the organization of scftware
systems at this highest level of gross size. In this case, the
twc-pass symbcl-table/scanning/parsing/code-generation approach is
extremely common for language translation problems (i.ee,
compilers), regardless of the particular parsing technique or
symvol table organizaticn emgloyed, and the mocules cf nearly
every system in the stucdy cirectly reflected this common approache.
The null conclusions for size in tokens is interpretable in view

TR=-¢E2

Section V

of Halstead”s software science concepts [Halstead 7?7, according
to «hich the program lenjth N is predictable from the number n; of
basic ingut-output parameters and the language level A. Since the
furctional specification, the application area, and the
impclementation language were 2ll fixed in the study, both n; ancd X
are essentially constant for each of the software systems,

img lying essentially constant lengths N as measured in terms of

Mt s bt Lt e

operators and operands. Considering the number of tokesns as
roughly equivalent to program length N, the study”s data seem to
support the software science concepts in this instance. :

Class 1IV:
within Class 1V (product aspects dealing with the software s

orszanization according to statements, constructs, and control

structures), there are only a few distinctions made between the

Grcupse.

With respect to location comparisons, the few [5S out of 2413
asgects that showed any distinction at all were unanimous in
concluuing DT = Al < AT. Essentially, three particular issues
were involved. The STATZMENTS TYPE COUNTS\IF, STATEMENT TYPE
PERCENTAGES\IF,y, and DECISICNS aspects are all ~elated to the

frequency of programmer-coced decisions in the software producte.

} Their common outcome DT = AI < AT is interpreted as demonstrating
an important area in which the disciplined methodology causes a
programming team to behave like an individual grogrammer. The
numter of decisions has been commonly accepted, and even
formalized [McCabe 76), as a measure of program complexity since
more decisions create more paths through the coces Thus, the
disciplined methodology effectively reduced the average complexity
from wnat it otherwise would have teen. The STATEMENT TYPE
COUNTS\PETURN aspect indicates a difference between the ad hoc

teams and the other two gjroupse. Since the EXIT and RETURN

statements are restricted forms of GOTOs, this difference seems to
hint at another area in which the disciplined methodology improves
conceptual control cver program structure. The STATEMENT TYPE

——

TR-6c& 3ection V 74

COUNTSNC(PROC)CALLNINTRINSIC asgect also indicates a slight trend in
the area of the frequency of input-output operations, which seems

intergcretacle only as a result of stylistic differencese.

With resgect to dispersion comparisons, only two particular
iscues were involvede The STATEMENT TYPE COUNTS\RETURN and
STATEMENT TYPE PERCENTAGE\RETURN aspects both indicated a strong
DT = AI < AT difference, suggesting that the frequency of these
restricted GOTCs is an area in which the disciplined methodolcgy
recuces variability, causing a programming team to behave more
Like an individual programmer. The STATEYENT TYPE COUNTS\
(PROC)CALL and STATEMENT TYPE COUNTS\N(PROC)CALL\NONINTRINSIC
aspects voth showed a DT < Al = AT distinction among the groups,

which is dealt with more apnropriately within Class VII below.

In summary cf Class IV, the interpretation is that the
functional component of control-construct organization is largely
unaffected by the team size and methodological discipline factors,
grocably due to the overriding effect of project/task
uniformity/commonality. However, two facets of the control
compcnent that were influenced were the frequency of decisions
(especially IF statements) and the freguency of restricted GOTOs
(especially RETURN statements). For these aspects, the
disicglineoc methcdology altered the control structure (and reduced
the complexity) of a team”s product to that of an indivicual”s

grcducte

Cless Vv:

Within Class V (product aspects dealing with data variables
anc their organization within the software), there are several
Jistinctions among the groupsy with an overall trend for both the
location and dispersion comparisons. Data variable organization
wasy, however, not emphasized in the disciplined methodology, nor
in the academic course which the participants in group DT were
takinge. With respect to location comparisons, all aspects shcwing
any oistinction at all were unanimous in concluding AI # AT = DT.

S ——
< ne ST

1
!
|
|

TR-4&8 3Section y 7S

The trend for ingiviguals to differ from teams, regardless of the
disciplined methodology, agppears not only for the total number of
data variadbles declared, but also for dats variables at each scope
level (olobal, parameter, Llocal) in one fashion or another. The
difference recaraing formal parameters is especially prominent,
since it shows up for their raw count frequency, their normalized
percentage frejuency, ang their average freguency per natural
enclosure (segment). with respect to dispersion comparisons, the
aprarent overall trend for aspects which show a distinction is
toward the Al = AT < DT outcome. No particular interpretation in
viesw of the exgerimental factors seems appropriate. Exceptions to
this trend agpeared for poth the raw count and gercentage of
call-by-reference paramenters (both Al < AT = DT), as well as two
other aspects.

Class VI:

within Class VI (groduct aspects cdealing with modularity in
terms of the packaging structure), there are essenvially no
distinctions amcng the groups,y except for two location comparison
issuess Most of the aspects in this class are also members of
Class iIl, Gross Sizey tut are (re)considered here to focus
attention upon the packaging characteristics of modularity (i.e.,
how the source code is divided into modules and segments, what
type of sezments, etcede Y'® disciplined methodology did not
explicitly include (nor diag group DT“s course work cover) concepts
of modularization or criteria for evaluating good modularity;
hencey no particular distinctions among the groups were expected
in this area (Classes VI and VII).

dith respect to lLdocation comparisons, the AI < AT = pT
out:ome for the SZGMENTS aspects, along with the companion outcome
AT = DT < Al for the AVERAGE STATEMENTS PER SEGMENT aspect (as
evi lainec uncer Class 111 above), indicates one area of packaging
thst i3 apparently sensitive to the team size factore Individual
pro ranmers Built the system with fewer, but larger (on the
swttm w), segments than either the ad hoc teams or the disciplined

A T R i

bl 5 o aagf el oy U Ban lada.) bl e Nt L apa

e T R RN PR RN Yo e e, N

W

TR-£E2 Section V 76

teams. The AI < AT = DT outcome for the AVERAGE NONGLOBAL
VARIABLES PER SEGMENT\PARAMETER aspect indicates that average
“callina sequence" length, curiously enough, is another area of
rackacing sensitive to team size. With respect to dispersion
comgarisons, there really were no differences, since the single
non-null outcome for AVERAGE SEGMENTS PER MODULE is actually a
fluke (raw scores for AT are exaggerated by the several monolithic
systems) as explained above. The overall interpretation for this
class is that
modularity, in the sense of packaging code into segments
and mocules, is essentially unaffecteac by team size or
methodological discipline, except for a tendency by
individual programmers toward fewer, longer segments

than programming teamse.
Class VII:

Within Class VII (procuct aspects dealing with modularity in
terms of the invocation structure), there are two distinction
trends for locaticon comparisons, but no clear pattern for the
dispersion comparison conclusions. This class consists of raw
counts and average-per-segment frequencies for invocations
(procedure CALL statements or function references in expressicns)
anc is considerea separately from the previous class since
mocularity involves not only the manner in which the system is
packagedy, but also the frequency with which the pieces are
invoked. For the raw count frequencies of calls to intrinsic
prccedures and intrinsic routines, the trend is for the
individuals and disciplined teams to exhibit ‘fewer calls than the
ad hcc teams. These intrinsic procedures are almost exclusively
the input-output operations of the languace, while the intrinsic
functions are mainly data type conversion routines. The second
trena for location comparisons occurs for two aspects (a third
asgect is actually redundant) related to the average frequency of
calls to programmer-defined routinesy in which the individuals
display higher average frequency than either tyce of teame This
seems coupled with group Al°s preference for fewer but larger

TR=-¢SE Section v 77

routines, as noted above. With respect to dispersion comparisons,
several cistinctions appear within this class, tut no overall
interpretation is readily aoparent (except for a consistent
reflection of a DT < Al difference, with AT falling in between,
leaniny one side or the other).

Class VIIL:

Within Class VIII (product aspects dealing with inter-seament
communication via formal parameters), there are only a few
distinctions among the groups. With respect to location
comparisonsy the total frequency of parameters and the average
freguency of parameters per segment both show a difference. The

interpretation is that

N e b

the ingividual programmers tend to incorporate less
inter-segment communication via parameters, on the i
average, than either the ad hoc or the disciplined i
programming teamse.
with resgect to Jdispersion comparisons, in addition to the
difference in the raw count of parameters referred to in Class V,
there is a strong cdifference in the variability of the number of
call-by-reference parameters, also apparent in the
ercentazes~-ty-type-of parameter aspects. The interpretation is
that
the ingdividual programmers were more consistent as a
group in their use (in this case, avoidance) of
reference parameters than either type of programming

team.

Wwithin Class IX (groduct aspects dealing «ith inter-segment
cormunication via global variables), there are several differences
amcn; the ygroups, including twc which indicate the beneficial
influence of the disciplined methodologys This class is comgposed

of aspects dealing with (a) frequency of globals, (b) average
frequency of glotals per module, (c) segment-alobal usage pairs

——— v e T T e ——————

e —————— = ettt 5 T N A N U 3 N e A5 e) e e i SRR L) - 5 A O o Bl SEABROTS udile. w AR AL Sl

i .

TR=-¢&é Section V 79

(frequency of access paths from segments to globals), and (d)

secment-j3lobal-sezment data bindings [Stevens, Myers, ang

Constantine 74; ppe 113-1192 (frequency of logical binaings

; tetween two different sesments via a global variable which is 3

mocified by the first seyment and referenced ty the second). 4

with respect to location comparisons, there is the
Al < AT = DT distinction in sheer numbers of globals, particularly

jlccals which are modified during execution, as noted in Class V.

However, when averaged per module, there appears to be no

distinction in the frequency of glotalse The AI < AT = DT
difference in the number of possible segment-global access paths
makes sense as the result of group Al having both feuer segments
anc fewer jlobalse ALl three groups had essentially similar
averase levels of actual segment-global access paths, but several
differences appear in the relative percentage (actual-to-possible
ratio) category. These three instances of AT < DT = Al

diftferences incicate that the degree of "globality” for global
variables was higher for the individuals and the disciplined teams
than for the ad hoc teams. Finally, another AT # DT = Al
aifference appears for the frequency of possible
secment-global-segment data bindings, indicating a positive effect
of the disciplined methodology in reducing the possible data
coupling among segments. It may be noted that these last two
1 categories of aspects, segment-global usage relative percentages
! and se;ment-ylobal-segment data bindings, also reflect ugon the
quelity of modularization, since good modularity should promote
the desree of "globality" for slobals and minimize the data
couplino among segments. The interpretation here is that
certain aspects of inter-segment communication via
globals seems to be positively influenced, on the

average, ty the aisciplined methodology.
with respect to dispersion comparisons, there is a diversity

of cifferences in this classy without any unifying intergretation

in terms of the experimental factors,

;
i

TR~6&2 Section VI 70

VI. Concludinc Remarks

A practical methodology was designed and adeveloped for
excerimentally and quantitatively investigating the software
development phenomenon. It was emgployed to compare three
particular software development environments and to evaluate the
relative impact of a particular disciplined methodology (made ur
of so-called modern programming practices). The experiments were
successful in measuring differences among programming environments
anc the results support the claim that disciplined methodolcgy
effectively improves both the process and product of software
cdevelogrente.

One way to substantiate the claim for imoroved process is to
measure the effectiveness of the particular programming
methodology via the number of bugs initially in the system (i.e.,
in the initial scurce code) ancd the amount of effort required to
remove thems (This criteria was independently suggested by
Prcfessor Me Shooman of Polytechnic Institute of New York while
speaking recently cn the subject of sofware reliability modelss)
Although neither of these measures was directly computed, they are
each closely asscciated with one of the process aspects considered
in the study: PPROGRAM CHANGES and ESSENTIAL J403 STEPS,
rescectively, The statistical conclusions (on location
comparison) for toth these aspects affirmed DT < Al = AT outccmes
at very low (<.,01) significance levels, indicating that on the
average the disciplined teams measured lower than either the ad
hoc individuals or the ad hoc teams which both measured about the
same. Thus, the evicence collected in this study strongly
cornfirms the effectiveness of the disciplined methodolagy in

cuilaing reliable software efficientlye.

The seccnd claimy that the product of a disciplined team
shculd closely resemble that of a single individual since the
disciplinec methodology assures a semblence of conceptual
integrity within a programming team, was partially substantiated.

A

Dt

TR=€E3 Section VI 8n

In many product aspects the products developed using the
disciplined methodology were either similar to or tended toward
the procducts developed ty the individualse In no case d4id any of
the measures show the aisciplineoc teams” products to be worse than
thcse developed by the 3u noc teams. It is felt that the
surerficiality of most of the product measures was chiefly
responsitle for the lack of stronger support for this second
claime The need for product measures with increased sensitivity
to critical characteristics of software is very clear,

The results of these experiments will be used to guide
further experiments anug will act as a basis for analysis of
software develcpment products and processes in the Software
Engineering Laboratory at NASA/GSFC [Rassili et ale 77]). The
inteantion is to persue this type of research, especially extending
the study to include more sophisticated and promising grogramming
aspects, such as Halstead”s software science quantities [Halstead

77) and other software comglexity metrics [McCabe 761].

———————— e T ket e R L T s Ty e usi > - A i b i i

TR-63f References 81

References

[(Baker 75] Fo.T. Baker. Structured Programming in a Production
Programming Environment. JEEE Iransacticos on Software
Engineering, Vole 1, NOoe 2 (June 1975), pp. 241-252.

[Bisili anc Baker 753 V.R. Rasili and F.T. Baker. JTytorial of
sgrycgyred Programming. IEEZ Catalog Nc. 75CH1049-€,
Eleventh IEEE Computer Society Conference (COMPCON), 1975,

[Basili and Turner ?5] V.R. Basili and A«sJe Turner. Iterative
tnhancement: A Practical Technique for Software Development.
1SEE JTranmsactions on Software Epgineering, Vol. 1, No. &
(December 1975), pp. 3%0-39%¢.

{Basili and Turner 76] V.R. Basili and A.J. Turner. SIMPL=I, A
structyured Programming Language. Paladin House Publishers,
Geneva, Illinois. 1976,

(easili et ale 77] V.Re 3asili, MeVe Zelkowitz, FeEe McGarry, Ro.W.
Reitery Jrey WeFe Truszkowski, and DeL. Weisse The Software
Engineering Laboratory. Technical Report TR-535, Department
of Computer Science, Unjversity of Maryland. May, 1977.

{Belady and Lehman 76 L.A. Belady and ™.™., Lehman. A Model of
Larse Program Development. JIEM™ Systems Jourpal, Vol. 15
(19756), No. 3, ppe. 225-2%1.

[Brocks 75] FePs Brooks, Jr. The Mythical Man-Month.
Addison-wesley Publishing Co.y, Reading, Massachusetts. 197°%.

[Conover 71] w.J. Conover. Practical Nonmparametric Statisgics.
John Wiley 8 Sons Ince.y, New Yorke. 1971,

(bahl, Dijkstra, and Hoare 72) O«.—Je Dahl, EeWe Dijkstra, and
CeA.Re Hoare. Structured Programming. Academic Press, New
Yorke. 1972,

[(baley 77) E+.Be Daley. Management of Software Development. IEFE
Irapsactions op Software Enuineecings Vole 3, No. 3 (May
1977), ppe 229-24C.

[(bunsmore and Ganncn 77] He.E. Dunsmore and J.D. Gannon.
txperimental Investigation of Programming Complexitye.
Proceedings of ACM=NBS Sixteenth Annual Technical Symposium:
Systems and Software (June 1977), Washinotony DeCey PP
117-125.

B . s _ amient e

R R e .

TR-¢66€ FkReferences &2

{Halsteao 77] M. Halsteau. Elements of Software Sgiepce.
Elsevier Computer Science Library. 1977,

(Jeckson 751 M.A. Jackson. Princigles of Proaram Design.
Acagemic Press, New Yorke. 1975,

Ckirk 6°%] ReEe Kirke Experimental Design: Procedures for the
Sehavioral Sciepces. Wadsworth Publishing Co., Belmont,
California. 1968,

(Linger, Mills, and witt 7?9) R.C. Linger, HeD. Mills, and B.l.
witte Structured Programming Theory ang Pragtigce.
Agdison-Wesley (to be published). 1979,

[(“cCabte 741 Tedeo McCabes A Complexity “easure. JEEE Yransacticns
xce=-220.

(Mills 73] HeDe Millse The Complexity of Proarams. in Program
Test Methods, editea by WeC. Hetzele., ppe 225-228.
Prentice-Hall, Ince.y Englewood Cliffs, New Jersey. 1572,

{(Myers 75) G.J. Myers. Reliable Software through Composite
tesign. Petrocelli/Charter. 1975,

[Myers 7E) GeJo Myerse A Controlled Experiment in Program Testinag
and Code walkthroughs/Inspections. (Communications of the
ALY, Vol. 21, Noe 9 (September 1978), pp. 760-768,

[(Nemenyi et ale. 77] P. Nemenyi, SeKe Dixon, NeBes White, Jr., and
M.L. Hedstrom. Statistics from Scratch. Holden-Day, San
Francisco, California. 1977.

fOstle and Mensing 751 B. Ostle and R.Ww. Yensing. Statistics in
Researchsy Third Edition. Iowa State University Press, Ames,
lowa. 1975,

[Sheppard et al. 78] S.P. Sheppard, M.A. Borst, 8. Curtis, and T.
Love. Factors Influencing the Understandability and
vcdifiability of Computer Programs. Humap Factors (to te
published). 19782,

CShneiacerman et ale 77] 6« Shneiderman, R Mayer, D« McKay, anc P.
Heller. Experimental Invastigations of the Utility of
betailed Flowcharts in Programming. Communications of tte

é;:' Vol. 20' Noe ¢ (June 1977)’ FPe 173-381.

{siegel 561 S. Siegels Nonparametric Statistics: for the
cehavioral sciepgese McCraw=-Hill Book Co., New Yorke. 195¢.

T I Ty

Aot iy

o 28

TR-6EE& References 87

CStevens, Myers, anc Constantine 74) W.P. Stevens, Ge.J. Myers, and
LeL. Constantine. Structured Design. J8M Systems Journal.
Vole. 13 (1974), Noe 2y PPe 115-126G,

cTukey €9] JoWe Tukeye. Analyzing Data: Sanctification or
Detective work? Amerigcan Psychologists, Vole. 24, No. 2
(February 1969), ppe. 83-91,

CWwirth 71] N. Wirthe Program Development bty Stepwise Refinement.
Commupigcations of the ACM, Vol. 14, No. & (April 1971), pp.
c21-227.

e

PR S

TR-¢3E Agpendix 1 (XA

Appendix 1. Explanatory Hctes for the Programming Aspects

The following numbered paragraphs, keyed to the List of
aspects in Table 1, explain in detail the programming aspects
consicered in the study. Vvarious system- or language-dependent
terms (e.gey mcdule, segment, intrinsic, enfry) are also defined

heree

(1) A computer job step is a single activity performed on a
computer at the operating system command level which is inherent
to the develorment effort and involves a nontrivial expenditure of
cormputer or human resourcese Typital job steps might include text
editin,, module compilation, program collection or link-editing,
anc program execution; however, operations such as querying the
operating system for status information or requesting access to
on-line files would not be considered as job steps. 1In this
stucyy, only module comgilations and program executions are counted
as COMPUTER JCE STEPS.

(2) A module compilation is an invocation of the
imglementation language processor on the source code of an
individual module. 1In this study, only compilations of modules
comprising the final scftware product (or logical predecessors
thereof) are counted as COMPUTER JOB STEPS\MODULE COMPILATIONS.

(3) ALL MCDULE COMPILATICNS are classified as either
IDENTICAL or UNIGUE depending on whether or not the source code
cormgiled is textually identical to that of a previous compilaticn.
puring the development process, each unique compilation was
necessary in some sense, while an identical compilation could have
been logically avoided ty saving the relocatable output of a
previcus compilation for later reuse (except in the situation of
uncoin; source code revisions after they have oeen tested and
found tc be erroneous or superfluous).

(«) A program exegution is an invocation of a complete

|

TR~-6E2 Appendix 1 8¢

grc,rammer~developed program (after the necessary compilation(s)
anc collection or link-editing) upcn some test datae

(5) A miscellaneous job steg is an auxiliary compilation or
; execution of something other than the final software product.
Only job steps counted as COMPUTER JOP STEPS, but not counted as
COMPUTER JOB STEPS\MODULE COMPILATIONS or COMPUTER JOB STEPS\
PRCGRAM EXECUTIONS, are counted as COMPUTER JOB8 STEPS\
MISCELLANEOUS.,

(6) An essential job step is a computer job step which
involves tne final software productt (or Logical predecessors
thereof) and could not have been avoided (by off-lLine computation
or by on-line storage of previous compilations or results). 1In
this study, the number of ESSENTIAL JOB STEPS is the sum of the
numter of COMPUTER JOS STEPS\MODULE COMPILATIONS\UNIQUE glus the
numper of COMPUTER JOB STEPS\PROGRAM EXECUTIONS.

(7) The numter of AVERAGE UNIGUE COMPILATIONS PER MODULE is
simply the number of COMPUTER JOB STEPS\MODULE COMPILATICNS\UNIQUEF
dividec by the number of MODULES.

(8) The number of MAX UNIGUE COMPILATIONS Fe.A.0. MODULE is
simply the maximum number of unique compilations for any one
} mogule of the final software procucte FeRe0. stands for "for any
| one”., €Each unique compilation is associated (either directly or
1 , as & logical preagecessor) with a particular moaule cf the final
prcduct; their sum is computed for each module; and the maximum of
the sums is taken.

(9) The program changes metric [Dunsmore and Gannon 771 is
detinea in terms of textual revisions in the source code of a
mocule during the development periody, from the time that module is
first presented to the comguter system, to the completion of the
projects The rules for codnting program changes =--which are

regroduced below from the gager referenced above with the kind
permission of the authors=- are such that one grogram ckange

TR~-6EE Appendix 1 &é

shculd represent approximately one conceptual change to the
progyrame

The following each represent a single program change:

(a) one or more changes to a single statement,
(A single statement in a program represents a sin
concept and even multiple character changes to th
statement represent mental activity with a single
concepte) R il

(C) one or more statements inserted between existing

E statements, ’

(The contiguous group of statements inserted probably
corresponds to _a single abstract instruction.)

(c) a change to a single statement followeos by the insertion

of new statements. .
(This instance probably represents a discovery that an
existing statement is insufficient and that it must be
altered and sugplemented in order to achieve the single
concegt for which it was produced.)

ale
at

the following are not counted as program changes:
deletion of one or more existing statements,
Statements which are deletecd must usually be replaced
th other statements elsewhere. The inserted
tatements are counted; counting deletions as well would
e double weight to such a2 change. Occasionally
tements are deleted but not replaced; these are
bably being used for debug?Ing purposes and their
tion takes no great mental activity.,) 2
nsertion ot standard output statements or special
provided debggg1n? directives, : N

e are occasionally inserted in a wholesale fasion

debue;wng. Wwhen the problem is discerned, these
)

- iN®
-

-~

(b) t
compi

e | =

s
n

t e? all removed, and the actual ststement change

s place.

nsertion of blank Lines, insertion of comments,

of ccmments, and reformatting without alteration of
nﬁ statements. .] ;

These are all judged to be cosmetic in nature.)

=T QA ~A~TQAD VS L ~ATM

OV C ~ADD D o
pa } XM NIT ~Oo W<

NN~
nOO
-
WV -
V"t

(

-

Frcsram changes are counteo automatically according to a specific

alcorithm which symbolically compares the source code from each
pair of consecutive compilations of a particular module (or
logical predecessor thereof)es Thus the tetal number of program

changes is a measure of the amount of textual revision to source

coce during (postdesign) system development.

(1) A mogdule is a separately compiled portion of the
cormclete software systems In the implementation language SIMPL-T,
a typical module is a collection of the declarations of several
glccal variatles and the cdefinitions of several segments. U[In
this stucy, only thcse mocules which comprise the final product
are counted as “ODULES.]

e o i ki e DR St e L et o o b il abe

(11) A gegment is a collection of source code statements,
tozether with declarations for the formal parameters and local

variables manipulated by those statements, which may be invoked as

el i e

TR=6EE Arppencix 1 a7

an operational unite In the implementation language SIMFL-T, a
secment is either a value-returning fupctign (invoked via
reference in an exgression) or else a non-value-returning
grecedure (invoked via the CALL statement), and recursive segments
are allowea and fully supportedes The segment, function, and
prccedure of SIMPL-T correspond to the (sub)program, function, and
sut routine of FORTRAN, respectively.

(12) The group of aspects named SEGCMENT TYPE COUNTS, etce,
gives the absolute number of prosrammer-defined segments of each
tycree The group of aspects named SEGMENT TYPE PERCENTAGES, etc ey
gives the relative percentage of each type of segment, compared
with the total number of programmer-defined sezments. The second
grcup of aspects is computed from the first by simply dividing bty
the number of SEGMENTS, as a way of normalizing the segment type

counts.

(12) Since secment definitions in the implementation lanocuage
SIFPL-T occur within the context of a module, this provids a
natural way to normalize (or average) the raw counts of segments.
The AVZRAGE SEGMENTS PER MODULE aspect represents the number of
secments in a tygpical moaule. It is computed in the obvious waye

(14) The numter of LINES is the total count of every textual
lire in the source code of the complete final product, includina
commentsSy, compiler directives, variable declarations, executable
statements, etce

(1) The number of STATEMENTS counts only the executable
corstructs in the source code of the complete final product.
These are high-level, structured-programming statements, incluaingc
sirple statements --such as assignment and procedure call=-=- as
well as compound statements --such as if-then-else and while-do-~
which have other statements nested within them. The
imglementation language SIMPL-T allows exactly seven different
statement types (referrea to by their distinguishing keyword cr
symbol) covering assignment (:=), alternation-selection (IF,

n .._j

TR-¢£2 Apgendix 1

(¢
(4]

CASe), iteration (WHILE, EXIT), and procedure invocation (CALL,
RETURN). Input-output operations are accomplished via calls to
certain intrinsic procedurese.

(14) The group of aspects named STATEMENT TYPE COUNTS, etcC.,
gives the absolute number of executable statements of each tyoe;
The group of aspects named STATEMENT TYPE PERCENTAGES, etce.; gives
the relative percentage of each type of statement, compared with
the total numter of executable statementss The second group of
asgects is computed from the first by simply dividing by the
nunber >f STATEMENTS, as a way of normalizing the statement type

countse

(17?) As mentioned aoove, the := symbol denotes the assignment
statement. It assigns the value of the exgression on the right
hand side to the variable on the left hand side.

(12) Both if-then and if-then-else constructs are counted as
IF statements. Each IF statement allows the execution of either
the then- or else-part statements, depending upon its Boolean

expressione

(17?) The CASE statement provices for selection frcm several
alternatives, depending upon the value of an expression. 1In the
imi Llementation language SIMPL-T, exactly one of the alternatives
(or an optional else-part) is selected per execution of a CASE, a
List of constants is explicitly given for each alternative, and
selection is tased upon the equality of the expression value with
one of the constantse A case construct with n alternatives is
lozically and semantically equivalent to a certain pattern of n

nested if-then-eilse constructse.

(27) The WHILE statement is the only iteration or looping
construct provided by the implementation language SIMPL-T. It
allows the statements in the loop tody to be executed repeatedly
(zero cr more times) depending upon a 2colean eapression which is
reevaluated at every iteration; the loop may also be terminatea

AD=A068 742 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2

INVESTIGATING SOFTWARE DEVELOPMENT APPROACHES. (U)
AUG 78 V R BASILI» R w REITER AFOSR=77=3181
UNCLASSIFIED TR-688 AFOSR=TR=79=0540

20F 2
-
ADBB 74z

END
DATE
FILMED

6--79
= DC

NL

-

flig &1

e flZ2Z o
P o vl 7
|“|| T
= e
i g
L2 s pee
= = =
y _
' y

-

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF smgmkns-wes»li
ey it b

s (0 4

I‘. “
&Y
e

TR-588 Appendix 1 k]

via an EXIT statement. G&tach WHILE statement may be optionally
lateled with a designator (referenced by EXIT statements) which
unigquely identifies it from other nested WHILE statements.

(21) The EXIT statement allows the abnormal termination of
iteration loops ty unconditional transfer of control to the
statement immediately following the WHILE statement. Thys it is a
very restricted form of GOTO. This exiting may take place from
any depth of nested loops, since the EXIT statement may cptionally
name a cdesignator which identifies the loop to be exited; without
such a designator only the immediately enclosing loop is exited.

(¢2) Since there are two types of segments in the
imglementation language SIMPL-T, there are two types of “calls” or
secment invocations.e Procedures are invoked via the CALL
statement, and functions are invoked via reference in an
exgression. The counts for these separate constructs are reported
secarately as the (PROC)CALL and FUNCTION CALL aspects, and
jointly as the INVOCATIONS aspecte

(22) lntrinsic means provided and defined oy the
imglementation language; nonintrinsic means provided and defined
by the programmer. These terms are used to distinguish built=-in

’ procedures or functions (which are supported by the compiler and

] utilized as primitives) from segments (which are written by the

{ proyrammer himself). Nearly all of the intrinsic procedures

i provicded by the implementation language SIMPL-T perform

; input-output operations ana external data file manipulations. All
of the intrinsic functions provided by SIMPL-T gerform data type

conversions and character string manipulations.

(24) The RETURN statement allows the atnormal termination of
the current segment by unconditional resumption of the previously
executin; segment. Thus it is another very restrictecd form of
GOTJds Within a function, a RETURN statement must specify an
expression, the value of which becomes the value returned for the
furction invocations Wwithin a procedure, a RETURN statement must

TR-0€2 Appendix 1 90

not specify such an expression. Additionally, a simple RETURN
statement is optional at the textual end of procedures; it will be
implicitly assumed it not explicitly codedes Tn this study, the
total number of explicitly cocded and implicitly assumed RETURN
statements, both from functions and procedures combined, is

countede.

(25) The AVERAGE STATEMENTS PER SEGMENT aspect provides a way
of normalizing the number of statements relative to their natural
enclcsure in a program, the segment. The measure also represents
the length, in executable statements, of a typical segment of the

prcyrame

(25) In the imﬁlementation language SIMPL-T, both simple
(ee3ey assignment) and compound (e.Ge, if-then-else) statements
may be nested inside other compound statements. A particular

a statement at the outermost level of each segment and increasing
by 1 for successively nestec statments. MNesting level can be
displayed visually via proper and consistent indentation of the

souce code listinge.

(2?) The number of DECISIONS is simply the sum of the numbers
of IF, CASEy, and WHILE statements within the complete source code.
Zach of these statements represents a unique (possibly repeated)
run-time decision coded by the programmer. This count is closely
associated with a recently proposed complexity metric (McCabe 76]
which essentially reflects the number of binary=-branching
decisions represented in the source code.

(2?) JTokens are the basic syntactic entities --such as
keyaords, operators, parentheses, identifiers, etce=~ that occur
in a grogram statement. The averace number of tokens per
statement may be vieyged as an indication of how much "“informaticn"
a typical statement contains, how "powerful" a typical statement

isy or how concisely the statements in general are coded.

TR-68% Appendix 1 91

(29) An invoggtion is simply the syntactic occurrence of a
construct by which either a programmer-defined segment or a
built=in routine is invoked from within another segment; both
prccedure calls and function references are counted as
INVCCATIONS., They are (sub)classified by the tyge (i.e,, function
or grccedure, nonintrinsic or intrinsic) of segment or roufine
ceing invokede.

(3C) The group of aspects named AVG INVOCATIONS PER (CALLING)
SEGMENT, etcey represents one way to normalize the absolute number
of invocations. These aspects reflect the numper of calls to
prcgrammer-defined segments and built=in routines from a typical
prc;rammer-defined segment. They are (sub)classified bty the type
of segment or routine being invoked. The measures for this group
of ascects are computec by simply cdividing each of the
corresponding measures in the INVOCATIONS aspect agroup by the
number of SEGMENTS.

(21) The group of aspects named AVG INVOCATICNS PER (CALLED)
SEGMENT, etcey represents another way to normalize the absolute
number of invocations. These aspects reflect the number of calls
to a typical programmer-defined segment from other segments. They
are (subdclassified by the type (i.ee.y function or procedure) of
segment being invoked.

(32) A data variable is an individually named scalar or array
of scalarss In the implementation language SIMPL-T, (a) there are
three data types for scalars --integer, character, and (varying
lensth) string--, (b) there is one kind of data gtructure (besides
scalar) =--single dimensional array, with zero~crigin subscript
rarjye--, and (c¢) there are several levels of gcope (as explained
in note 23 below) for Jata variables. In addition, all cata
variables in a SIMPL-T program must be explicitly declared, with
attributes fully specifieds The number of DATA VARIABLES is
computed by counting each of the data variables declared in the
final software procduct once, regardless of type, structure, or
scoge. Note that each array is counted as a single data variable,

.

TR=-4ZE Appencix 1 9?2

& | (32) In the implementstion languaje SIMPL-T, data variaples
can have any one of essentially four levels of scope =--entry
slccal, nonentry global, parameter, and lLocal-- depending on where
anc how they are declarec in the program. %Note that the noticn of
scoge cdeals only with static accessibility by name; the effective

accessibility of any variable can always te extended by passing it

as o parameter between segments. The scope levels are explaired

here (anc presented in the aspect (sub)classifications) via a
hierarchy of distinctions.
The primary distinction is between global and nonglobal.
the module in which they are declared. Nonglobal variables are
accessible by name only to the single segment in which they are
declared.
Global varaibles are secondarily distinguished into entry and
¢ nonentry. Entry globals are actually accessible by name to each
of the sesments in several (two or more) modules: the module which
declarec it EMNMTRY, plus each of the modules which declared it
EXTernal (as explained in note 24 below)e Ngnentry globals are
accessible by name only within the module in which they are
declared.
Nonglobal variables are seccncdarily distinguished into formal
parameter and local; Formal parameters are accessible by name
: only within the enclosing (called) seqgment, tut their values are
‘ not comgpletely unrelated to the calling segment (as expclained in
! note 35 below)e LQCals are accessible by name only within the
! enclosing segment, and their values are completely isolatec from

i any other segment.

(24) Engtry means that the data variable [or segment] is
declarecd to be accessitle from within other secarately compiled
mocules (in which it must be explicitly ceclared as EXTernal)d,
Nornentry means that the data variatle [or segment] is accessitle
only within the mocule in which it is declared (or definedl. 1Inr
this study these terms are used gertaining only to global

variatleses "Entry global™ actually constitutes an extra level cf
sccze seyond “nonentry glocal™. [Although the implementation

s‘,
l
&

-~

R

[y #9

TR-688 Appencdix 1 9z

lanjuaje SIMPL-T does allow the EXTernal attrioute to be declarea
for local variables =--just the enclosing segment has access to a
gloval declared in a different module--, it is an extremely
obscure and rarely usea feature; it never occurred in any of the
final software products examined in this study.l

(3%) Modifigd means referred to, at least once in the program
source code, in such a manner that the value of the data variable
woulc be (re)set when (and if) the appropriate statements were to
be executeds Data variables can be (red)set only by (a) being the
“target" of an assignment statement, (b) beinc passed by reference
to some programmer-defined seament or tuilt-in routine, or (c)
being named in an "input statement.” This third case is really
covered by the second case since all the "input statements®™ in
SIMPL-T are actually calls to certain intrinsic proceaures wit
passed-ty-reference parameters. Unmodified means referred t
throughout the program source code, in such a manner that the
value of the data variable could never be (re)set during -
executions These terms are used pertaining to global data
variatles; any global variable is allowed to have an initial value
(ccnstants only) specified in its declaration. Globals which are
initialized but UNMODIFIED are particularly useful in SIMPL-T
prosrams, serving as "named constants."”

(15) The inplementation language SIMPL-T allows two types of
parameter passage. Pass-by-yalue means that the value of tie
actual argument is simply copied (upon invocation) into the
correspocnding formal parameter (which thereafter behaves like a
local variable for all intents and purposes), with the effect that
the called routine cannot modify the value of the calling
segment“s actual argument. Pass-by-reference means that the
adaress of the actual argument =--which must be a variaole rather
then an expression-- is passed (upon invocation) to the callecd
routine, with the effect that any changes made by the called
routine to the corresponding formal parameter will be reflected in
the value of the calling segment”s actual argument (upon return).
In SI¥PL-T, formal parameters which are scalars are normally

TR-0€23 Appendix 1

(default) passed by value, but they may be exclicitly declared to
be passec by reference; formal parameters which are arrays are
aluays passed by reference.

(27) The group of aspects named DATA VARIABLE SCOPE COUNTS,
etcey s;ives the absolute number of declareac data variables
according to each level of scope. The group of aspects namec DATA
VARKIABLE SCOPE PERCENTAGES, etcey gives the relative percentage of
variables at each scope level, compared with the total number of
declared variables. The second group of aspects is computed from i
the first by simply dividing by the number of DATA VARIABLES, as a h
way of normalizing the data variable scope countse. 3

(32) Since data variable declarations in the implementation
languajze SIMPL-T may only appear in certain contexts within the
prcisram --globals in the context ¢f a module and and nonglobals in

the context of a segment=--, this provides a natural way to
normalize (or average) the raw counts of data variables. The
grcug of aspects named AVERAGE GLOBAL VARIABLES PER MODULE, etcCey
regresent the number of 3jlobals declared for a typical module.
They are computed by simply dividing each of the corresponding raw
counts of glotal data variables by the number of MODULES. The
group of aspects named AVERAGE NONGLOBAL VARIAEBLES PER SEGMENT,
etc., represent the numter of nonglobals declared for a typical
sesment. They are computed by simply dividinc each of the
corresponding raw counts of nonglobal data variables by the numter
of SEGMENTS.

(39) Since there are two types of parameter passing
mechanisms in the implementation language SIMPL-T (as exglained in
note X% above), it is desirable to normalize their raw freguencies
into relative percentages, indicating the programmer”s degree o°f
“preference" for one type or the other. The croup of aspects
named PARAMETER PASSAGE TYPE PERCENTAGES, etc.y, gives the
rercenta es of each type of parameter relative to the tctal numler

of parameters declared in the grograme. They are computec ir {lie
obvious waye

E R

—

TR-6EE& Appendix 1 13

(4) A segment-glotal ysage pair (p,r) is simply an instance
of a gloval variable r teing used by a segment p (i.e., the global
is either modified (set) or accessed (fetched) at least once
within the statements of the segment). Each usage pair represents
a unigue "use connection” between a global and a segment. Usage
pairs are (sut)classifiea by the type (i.e., entry or nonéntry.
mocdified or unmocified) of global data variable involved.

In this stuady, seyment-glotal usage pairs were counted in
three different ways.s First, the (SEG,5L0BAL) ACTUAL USAGE PAIP
counts are the avsolute numbers of true usage pairs (py,r): the
glcbal variable r is actually used by segment p. They represent
the true frequencies of use connections within the program,
Seconc, the (SEG,GLOBAL) POSSIBLE USACGE PAIR counts are the
absolute numbers of potential usage pairs (p,r), given the
program”s global variables and their declared scope: the scope of
global variable r simply contains segment p, so that segment p
could potentially modify or access re These counts of possible
usage pairs are computed as the sum of the number of segments in
each glotcal®s sccpe. They represent a sort of “worst case"
frequencies of use connections. Third, the (SEG,GLOSAL) USAGE
RELATIVE PERCENTAGE counts are a way of normalizing the number of
usage pairs since these measures are simply the ratios (expressed
as percentages) of actual usage pairs to possible usage pairse
They represent the frequencies of true use connections relative to
potential use connections. These usage pair relative percentage
metrics are empirical estimates of the likelihood that an
artitrary segment uses (i.e.y sets or fetches the value of) an

arbitrary 3lobal variable.

(41) A segment-ylobal-seament data binding (psreq) is an
occurrence of the following arrangement in a program [Stevens,
Myers, and Constantine 74]: a segment p modifies (sets) a glctal
variable r which is also accessed (fetched) by a segment q, with
sez:ment p different from segment g« The existence of a cata
tindin; (pyryq) indicates that the behavior of segment q is
prcbably dependent on the performance of segment p because of the
data variable ry, whose value is set by p and used by qe¢ The

TR-638 Appendix 1 G4

Linding (p,ryq) is different from the binding (g,rep) which may
also exist; occurrences such as (pyryp) are not counted as data
bindinjse. Thus each (SEG,GLORAL,SEG) DATA BINDING represents a
unigue communication path between 3 pair of segments via a global
variables The total number of (SEG,GLOBAL,SEG) DATA BINDINGS
reflects the degree of a certain kind of “connectivity" (i.e.,
between segment pairs via globals) within a complete program.

(42) In this study, segment-global-segment data bincings were
counted in three different ways. First, the ACTUAL count is the
absolute number of true data bincings (p,r,q): the global variatle
r is actually modified by segment ¢ and actually accessec by
segment Ge It represents the degree of true connectivity in the
projram. Second, the POSSISLE count is the absolute number of
potential data bindings (p,r,q), 3iven the program”s global
variatles and their declared scope: the scope of global variatle r
simoly contains both segment p and segment q, So that segment p
could. potentially modify r and segment q could potentially access
re This count of POSSIELE data bindings is computed as the sum of
terms s*(s-1) for each globaly where s is the number of segments
in that jlobal”s scope; thus, it is fairly sensitive (numerically
speaking) to the total numper of SEGMENTS in a program. It
regresents a sort of "worst case' degree of potential
connectivitys Third, the RELATIVE PERCENTAGE is a way of
normalizing the number of data bindings since it is simply the
quotient (expressed as a percentage) of the actual data bindings
divided by the possible data bindings. 1t represents the degree

of true connectivity relative to potential connectivitye

(47) Actual data bindings are (sub) classified as
“sutfunctional®” or "independent®™ depending on the invocation
relationship between the two segments. A data binding (p,ryq) is
subfunctional if either of the two segments p or g can invoke ttre
other, whether directly or indirectly (via a chain of intermediate
invocations involving other segments). In this situation, the
function of the one segment may be viewed as contributing to the
overall function of the other segment. A data binding (pyreg) is

T LW 3
e M:"wﬁ‘i.

Gl e it

TR=-088 Appendix 1 97

ingependent if neither of the two segments p or q can invoke the
other, whether directly or indirectly. The transitive closure of
the call graph among the segments of a program is employed to make
this distinction between subfunctional and independent.

(44) There exist several instances of duplicate programming
aspects in the Taole 1 Llisting. That is, certain logically unicue
aspects appear a second time with another name, in order to
provide alternative views of the same metric and to achieve a
certain degree of completeness within a set of related aspects.
For example, the FUNCTICN CALLS aspect and the STATEMENT TYPE
COUNTS\V(PRIC)ICALL aspect are listed (and categorized appropriately)
frcm tne viewpoint of the various type of constructs which
comprise the the implementation language. B8u’. the very same
metrics can be considered from the unifying viewpoint of the
various subtype frequencies for segment invocations, and thus it
is desirable to include the duplicate aspects INVOCATIONS\
FULCTIONS and INVOCATIONS\PROCEDURES as part of the natural
categorization of INVOCATIONS. Listed below are the pairs of
duglicate programming aspects that were considered in this study:
1« FUNCTION CALLS
<=> INVOCATIONS\FUNCTICN

2e FUNCTION CALLS\NONINTRINSIC
<=> INVOCATIONS\FUNCTION\NONINTRINSIC

2o FUNCTION CALLS\INTRINSIC
<=> INVOCATIONS\FUNCTION\VINTRINSIC

4. STATEMENT TYPE COUNTS\(PROC)CALL
<=> INVOCATIONS\PROCEDURE

Se STATEMENT TYPE CUUNTS\(PROC)CALL\NONINTRINSIC
<=> INVCCATIONS\PROCEDURE\NONINTRINSIC

6. STATEMENT TYPE COUNTSN(PROCICALLNINTRINSIC
<=> INVOCATIONS\PROCEDURENINTRINSIC

7« AVG INVOCATIONS PER (CALLING) SEGMENT\NONINTRINSIC

<=> AVG INVOCATIONS PER C(CALLED) SEGMENT
2y definition, the data scores obtained for any pair of duplicate
aspects will be indentical, and thus the same statistical
conclusions will be reached for both aspects.

— i T e PR

TR-6(88 Appendix 2 99

Appendix 2. Ep3lish Statements for the Non-Null Conclusions

The following numpered sentences simply provide English
translations for the non-null locatign comparisons presented in
symbolic equation form in Table 2.1, They may be skimmed by the
reager since they do not add to the information appearing in the

tatble.

(1) According to the SEGMENTS aspect, the individuals (Al)
organized their software into noticeably fewer routines
(i.e.y functions or procedures) than either the ad hoc teams
(AT) or the disciplined teams (DT).

(2) Coth the ad hoc teams (AT) and the disciplined teams (DT)
declared a noticeably larger number of data variables (i.e.,
scalars or arrays of scalars) than the individuals (Al),
according to the DATA VARIABLES aspect.

(3) In particular, a definite trend toward this same difference
was apparent in the number of glcbal variables, the number of
glotal variables whose values could be modified during
execution, and the number of formal parameter variables,
according to the DATA VARIABLE SCOPE COUNTS\GLOB{L, DATA
VARIABLE SCOPE COUNTS\GLOBAL\MODIFIED, and DATA VARIABLE
SCOPE COUNTS\NONGLOBAL\PARAMETER aspects, respectivelye.

(4) A trend existed for tﬁe individuals (Al) to have a smaller
percentage of formal parameters compared to the total number
of declared data variables than either the ad hoc teams (AT)
or the disciplined teams (DT), according to the DATA VARIASLE
SCOPE PERCENTAGES\NONGLOBAL\PARAMETER aspect.

(5) According to the AVERAGE NONGLOBAL VARIABLES PER SEGMENT\
PA2AMETER aspect, there was a trend for the individuals (AI)
to have fewer formal parameters per routine than did either
the ad hoc teams (AT) or the disciplined teams (DT).,

(5) A definite trend existed for the individuals (AI) to have
fewer possible seyment-3global usaze pairs (i.e., potential
access of a global variable by a routine) than either the ad
hoc teams (AT) or the disciplined teams (DT), acccrdina to

TR-683 Appendix 2 o

the (SEGyGLOSAL) PCSSIBLE USAGE PAIRS aspecte

(7) According to the AVERAGE STATEMENTS PER SEGMENT asgect, the
individuals (Al) displayed a trend toward having a greater
numper of statements per routine than did either the ad hoc
teams (AT) or the disciplined teams (DT).

(8) There existed slight trends toward more calls to
programmer-defined routines per calling routine and per
called routine for the individuals (AI) than for either the
aa hoc teams (AT) or the disciplined teams (DT), according to
the AVG INVOCATIONS PER (CALLING) SEGMENT\NONINTRINSIC and
AVG INVOCATIONS PER (CALLED) SEGMENT aspectse

(9) In additiony, a very slight trend existed for the individuals
(A1) to have more calls to programmer-defined functicns,
averaged per programmer-cdefined function, than either the ad
hoc teams (AT) or the disciplined teams (DT), according to
the AVG INVOCATIONS PER (CALLED) SEGMENT\FUNCTICN aspect.

(10) According to the DATA VARIABLE SCOPE PERCENTAGES\NONGLOBAL\
LICAL aspect, the individuals (Al) had a Larger percentage of
local variables compared to the total numoer of declared data
variables than either the ad hoc teams (AT) or the
disciplined teams (DT).

(11) A slight trend existed for toth the individuals (Al) and the
disciplined teams (DT) to have a larger relative percentage
of segment-global usage pairs (i.e.y, the ratio of actual
segmegt-glooal usage gairs to possible segment-global usage
gairs) than the ad hoc teams (AT) for nonentry global
variables whose values were not modified during execution
(i.eey the simplest kind of "named constants"), according to
the (SEGyGLOSAL) USAGE RELATIVE PERCENTAGES\NONENTRY\
UNMODIFIED aspect.

(1¢) According to the STATEMENT TYPE COUNTS\IF and STATEMENT TYPE
PERCENTAGE\IF aspects, toth the individuals (Al) and the
disciplined teams (D0T) coded noticeably fewer IF statements
than the ad hoc teams (AT), in terms of both total number and
percentage of total statements.

(12) A trend existedy according to the STATEMENT TYPE CCUNTS\
(PROCICALLVINTRINSIC aspect, for the ad hoc teams (AT) to make

TR-c€8 Appendix 2

a larger number of calls on intrinsic procedures (i.e.,
built=in language-provided routines primarily for
incut-output) than either the individuals (Al) or the
disciglined teams (DT).,

(14) According to the STATEMENT TYPE COUNTS\RETURN aspect, the ac
hoc teams (AT) hac a noticeably larger number of RETURN

statements than either the individuals (A1) or the
disciplined teams (DT).

(15) According to the DECISIONS asgect, both the individuals (AI)
and the disciplined teams (DT) tended to code fewer decisicns
(i.ee.y 1F, 4HILE, or CASE statements) than the ad hoc teams

(AT) .
3 (1¢) A trend existed for the ad hoc teams (AT) to have more calls
E to intrinsic proceduresy, with a noticeably Larger number of '

calls to intrinsic routines (jeeey built-in language-provided
procedures and functions, primarily for input-output and type

conversion), than either the individuals (AI) or the
disciplined teams (dT), according to the INVOCATIONS\
PROCEDURENVINTRINSIC and INVOCATIONSVINTRINSIC aspects,
resgectivelye.

(17) According to the (SEG,GLOBALSEG) DATA BINDINGS\POSSIBLE

aspecty, there was a slight trend for both the ingividuals

(AI) and the disciplined teams (DT) to have fewer possible
data bindings [Stevens, ®yers, and Constantine 74] (ij.e.,
occurrences of the situation where a global variable r is

toth potentially modified by a segment p and potentially

accessed by a segment q, with p different from q) than the ad

hoc teams (AT).,

! (182 Acccrding to the COMPUTER JOB STEPS aspect, the disciplined
teams (DT) required very noticeably fewer computer job steps
(i.esy mocule compilations, program executionsy or
miscellaneous job steps) than both the individuals (Al) and
tne ad hoc teams (AT).

(19) This same difference was definitely apparent in the total

number of module compilations, the number of unique (i.ee,
not an identical recompilation of a previously compiled
mocdule) module compilations, the number of program

Sl asdaaBiee

-

TR-088 Appendix 2 101

(2C)

(22)

(22)

(24)

executions, and the number of essential job steps (i.e.,
unique module compilations plus program executions),
according to the COMPUTER JOB STEPS\MODULE COMPILATIONS,
COMPUTER JOB STEPS\MODULE COMPILATIONS\UNIQUE, COMPUTER JOB
STEPS\PRCGRAM EXECUTIONS, and ESSENTIAL JOB STEPS aspects,
respectively.

A trend existed for both the individuals (AI) and the ad hoc
teams (AT) to have reguired more miscellaneous job steps
(ieeey auxiliary compilations or executions of something
other than the final software product) than the disciplined
teams (DT), according to the COMPUTER JO8 STEPS\MISCELLANEOUS
aspecte

According to the AVERAGE UNIQUE COMPILATIONS PER MODULE and
¥AX UNIQUE COMPILATIONS F.A.0. MODULE aspectsy, respectively,
the disciplined teams (DT) required fewer unique compilations
cer module on the average, with a definite trend toward fewer
unique compilations for any one module in the worst case,
than either the individuals (A1) or the ad hoc teams (AT),
Accorading to the LINES aspect, there was a definite trend for
the individuals (Al) to have produced fewer total symbolic
lines (includes comments, comgiler directives, statements,
cdeclarations, etc.) than the disciplined teams (DT) who
produced fewer than the ad hoc teams (AT).

A definite trend existed for the individuals (AI) to have 2
larger relative percentage of segment-glopbal usage pairs for
entry globals and for entry globals which could be modified
during execution than the disciplined teams (DT) who had a
larger still percentage than the ad hoc teams (AT), according
to (SEGyGLCBAL) USAGE RELATIVE PERCENTAGES\ENTRY and
(SEGyGLOPAL) USAGE RELATIVE PERCENTAGES\ENTRY\MODIFIED
aspectsy respectively.

Accoraing to the PPIGRAM (CHANGES aspect, there existea a
trend for the disciplined teams (DT) to require fewer textual
revisions to build and debug the software than the
individuals (Al) who required fewer revisions than the ad hoc

teams (AT).

TR=-583 Agpendix 2 102

The follosing numberea sentences simoly provide English
translations for the non-null dispersion conclusions presented in
symoolic equation form in Table Z«2s They may be skimmed by the
rezager since they do not add to the information appearing in the {

tat Le.

(1) The individuals (AI) displayed noticeably less variation in
the number of formal parameters passed by reference than bcth
the ad hoc teams (AT) and the disciplined teams (DT), with a
similar trend in the percentage of reference parameters
compared to the total number of declared data variatle, |
according to the DATA VARIASBLE SCOPE COUNTS\NONGLOBAL\ %
PARAMETER\REFERENCE and DATA VARIARLE SCOPE PERCENTAGES\ %
NONGLOBAL\PARAMETER\REFERENCE aspectse. -

(2) According to the PARAMETER PASSASGE TYPE PERCENTAGES\VALUE and
PARAMETER PASSAGE TYPE PERCENTAGES\REFERENCE aspects, both
the ad hoc teams (AT) and the disciplined teams (DT) tended
to have more variation in the percentage of value parameters
and reference parameters compared with the total number of

formal parameters declared than the individuals (Al).
(3) The individuals (Al) had less variation in the numper of

possible segment-global usage pairs (i.e.y, potential access
of a global variable by a routine) involving nonentry globals

than either the ad hoc teams (AT) or the disciplinec teams
] (DT), according to the (SEG,GLOSAL) POSSIBLE USAGE PAIRS\
{ NONENTRY asgecte :
' (4) According to the (SEG,GLOBAL,SEG) DATA BINDINGS\ACTUAL\ '

INDEPENDENT aspect, there was a very slight trend for the

individuals (AI) to have less variation in the numter of

actual data bindings [Stevens, Myers, and Constantine 7&]
(ieeey occurrences of the situation where a global variable r

is both actually moasified by a segment p and actually
accessed by a segment qy with p different from gq) in which
the two routines were "independent” (i.ee.y, neither segment
can invoke the other, directly or indirectly) than toth the
ad hoc teams (AT) and the disciplined teams (DT).

(5) The individuals (AI) exhibited noticeably greater variation

TR=-588 Appendix 2 10%

than either the ad hoc teams (AT) or the disciplined teams
(DT) in the number of miscellaneou§ job steps (i.eey
auxiliary ccmpilations or executions of something other than
the final software project), according to tﬁe COMPUTER JCB
STEPS\MISCELLANEOUS aspect. '

(5) In the number of calls in general and of calls to
prcgrammer-defined routines in particular; the indeiduals
(A1) displayed noticeably greater variation than bbth the ad j
hoc teams (AT) and the disciplined teams (DT), accgrding to '
the INVOCATIONS and INVOCATIONS\NONINTRINSIC asbects._

(?) According to the STATEMENTS aspect, a very slight trend
existed for the ad hoc teams (AT) to show less variability
than either the discigplined teams (0T) or the individuals
(AI) in the number of executable statements.

(8) A trend existed for both the individuals (Al) and the
disciplined teams (DT) to have. greater variability than the
ad hoc teams (AT) in the average (per function) number of
calls to programmer-defined functions, according to the AVC
INVOCATICNS PER (CALLED) SEGMENT\V\FUNCTION aspect. ;

(9) According to the (SEG,GLOBAL) ACTUAL USAGE PAIRS\MODIFIED
aspect, a definite trend existed for the ad hoc teams (AT) to
have less variapility than either the individuals (AI) or the
disciplined teams (DT) in the number of actual segment-glotal

. usage pairs (i.eey actual access of a global variable by a
j routine) involving globals which were modified during
execution,

(10) According to the AVERAGE SEGMENTS PER MOCULE aspect, the
individuals (AI) and the disciplined teams (DT) both
exhibited noticeably less variation in the average¢ number of
routines cer module than the ad hoc teams (AT).

(11) The ad hoc teams (AT) were noticeably more variable than
either the disciplinec teams (DT) or the individuals (A]) in
the percentage of coded RETURN statements compared with the
total numter of statements, accoraing to the STATEMENT TYPE
PZRCENTAGES\RETURN aspect.

(12) According tc the AVERAGE GLCBAL VARIABLE PER MODULE\MODIFIED
ascect, the ad hoc teams»(AT) displayed a cdefinite trend

TR=-588 Appendix 2 104

toward greater variability than both the individuals (AI) and
the disciplined teams (DT) in the average number of glotals
per module which were modified during executione.

(12) The individuals (Al) and the disciplined teams (DT) were both
noticeably less variaole than the ad hoc teams (AT) in the
numper of possible segment-global usage pairs where the
global variable was nonentry and mooified during execution,
according to the (SEG, GLOSAL) POSSIBLE USAGE PAIRS\NONENTRY\
MODIFIED aspecte.

(14) Accoroing to the (SEGyGLOBAL,SEG) DATA BINDINGS\POSSIBLE
aspecty the ad hoc teams (AT) tended toward greater
variability than either the individuals (Al) or the
disciplined teams (DT) in the number of possible data
tindingse.

(15) According to the STATEMENT TYPE COUNTS\(PROC)ICALL, STATEMENT
TYPE COUNTS\(PROC)CALL\NCNINTRINSIC, INVOCATIONS\PROCEDURE,
and INVOCATIONS\PROCEDURE\NCNINTRINSIC aspects, both the
individuals (AI) anad the ad hoc teams (AT) were noticeably

more variable than the disciplined teams (DT) in the numter

of calls to intrinsic and nonintrinsic procedures, with a

similar trend for calls to nonintrinsic procedures alone.
(1¢) This same difference appeared in the average number of

intrinsic procedure calls per calling segment, according to

f the AVG INVOCATIONS PER (CALLING) SEGMENT\PROCEDURENINTRINSIC

1] aspect.

(17) According to the DATA VARIAELES SCOPE PERCENTAGES\GLOBAL\
NONENTRY\MODIFIED aspect, the disciplined teams (DT) displayed :
noticeably smaller variation than either the individuals (a]1) |

* or the ad hoc teams (AT) in the percentaoce of nonentry glotal

variables that were modified during execution compared tc the

; total number of data variables declared.

(12) According to the AVERAGE TOKENS PER STATEMENT aspect, a
definite trend existed for the disciplined teams (DT) to

B | exhibit greater variability in the average number of tokens

E | (ieeey basic symbolic units) per statement than both the
individuals (AI) and the ad hoc teams (AT),

(1¢) The trend toward less variation among both the individuals

TR-583 Appendix 2 10°¢

(20)

(22)

(22)

(A1) and the ad hoc teams (AT) than among the disciplined
teams (DT) existed in the number of global variables and in
the number of formal parameters, according to the DATA
VARIABLE SCOPE COUNTS\GLOSAL and DATA VARIABLE SCOPE COUNTS\
NONGLOSAL\PARAMETEZR aspects, respectively. '

A sinilar difference in variability existed noticeably in the
percentaces, compared to the total number of declared data
variables, of globals, of nonglobals, of formal parameters,
and of formal parameters passed by value, according to the
DATA VARIABLE SCOPE PERCENTAGES\GLOBALy DATA VARIABLE SCOPE
PERCENTAGES\NONGLOBAL, DATA VARIABLE SCOPE PERCENTAGES\.
NONGLOBAL\PARAMETER, and CATA VARIABLE SCOPE PERCENTAGES\
NONGLOSAL\PARAMETER\VALUE aspects, respectively.

According to the (SEG,GLOBAL) POSSIBLE USAGE PAIRS and
(SEGyGLOBAL) POSSIBLE USAGE PAIRS\NONENTRY\UNMODIFIED
aspects, there was 3 noticeable difference in variability,
with the individuals (Al) Lless than the disciplined teams
(DY) less than the ad hoc teams (AT), for the total number of
possible segment-global usage pairs, with a similar trend for
possicle usage pairs in which the global variable was
nonentry ang not modified during execution.

There was a noticeaole difference in variability, with the
disciplined teams (D7) less than the individuals (AI) less
than the ad hoc teams (AT), in the maximum number of unique
compilations for any one module, according to the MAX UNIQUE
COMPILATIONS FoeAeO. MODULE aspecte.

According to the STATEMENT TYPE CCUNTS\RETURN aspect, there
was a difference in variability, with the disciplined teams
(0T) Lless than the individuals (AI) less than the ad hoc
teams (AT), for the number of RETURN statements coded.

v—-nEB-HI-l---III-IIIIII-I-I-III-I-IlIII-I-II-..I-IIIII-I-..‘

TR=-6E2 Appendix 2 106

Apgendix 2. English Paraghrase of Relaxed
pifferengiation Analysis

The following two paragraphs simply provide an English
paraphrase cf the "“relaxed differentiation” details presented in
Tacles 4,1 and 4.2, respectively.

On Location comparisonsy four programming aspects yielded
completely differentiatea conclusionse They are “relaxed"™ to
partially agifferentiated conclusions as follows:
1¢ From DT < AI < AT on PROGRAM CHANGES, the DT < Al = AT

conclusion overwhelmingly duarfs the DT = AI € AT conclusion
2e The 0T < AT difference is more pronounced than the Al < pT

difference from AI < DT < AT on LINES
3. AT < DT < Al on (SEG,GLOBAL) USAGE RELATIVE PERCENTAGES\ENTRY
is more significantly “relaxed"” to AT < DT = AI than to

AT = DT < Al et
4. The AT < DT and DT < Al differences from AT < DT < AI on

(SEGyGLOSAL) USAGE RELATIVE PERCENTAGES\ENTRY\MODIFIED are

toth exactly equally strong

On dispersign comparisons, three programming aspects yielaed
comzletely differentiateu conclusions. They are "relaxed" to
partially gifferentiated conclusions as follows:

1« The DT < Al difference is much more pronounced than the

Al < AT difference from DT < Al < AT on ™MAX UNIQUE

COMPILATIONS F.,A.0s MODULE
2e From DT <€ Al < AT on STATEMENT TYPE COUNTS\RETURN, the

DT = Al < AT conclusion overwhelmingly dwarfs the

0T < Al = AT conclusion
¢ Al <€ DT < AT on (SEG,GLOBAL) PCSSIBLE USAGE PAIRS is more

significantly “relaxed®™ to Al < AT = DT than to DT = Al < AT
4e The Al < DT cifference is more pronounced than the DT < AT

difference from AI < DT < AT on (SEGyGLOPAL) POSSIBLE USAGE

PAIRS\NONENTRY\UNMODIFIED

TR=6EE Agpendix &

Appendix 4. £$nalish Categorization of Directionless Disgtingtions

The following two paragraphs grovide a complete itemization
of directionless distinctionse The information contained in
Tables 2 and 4 has simply peen reorganized and presented in
English to support a directionless view of the study”s resultse.

Specifically, for the study”s logation comparisons:
(1) The distinction

Al (individuals) # AT (ad hoc teams) = DT (disciglined teams)
was observed for none of the crocess aspects ancd for several
proouct aspects,y, including

- the raw count of programmer-defined segments (i.e.,
routines),

- the raw count of programmer-defined data variables,

- several raw counts and relative percentages of data
variables according to their scope (i.e., glotal,
parameter, or local),

- the raw count of potentjal segment-glotal usage pairs
(which is strongly dependent on the raw counts of
segments and globals, both of which are also in this
category), and

- several "per segment®” averages of other raw counts (i.e.,
formal parameters, executable statements, and
nonintrinsic calls).

(2) The distinction

AT (ad hoc teams) # DT (disciplined teams) = Al (individuals)
was otserved for none of the process aspects and for several
product aspects, including

- the raw count of Lines of symbolic source code,

both the raw counrt and relative percentage of IF
statements,
- the raw ccunt of procrammed decisions (i.eey, total number
of 1Fy CASE, and WHILE statements),
- the raw count of RETURN statements,
- the raw counts of calls to intrinsic routines and intrinsic

“"-'--“---'-““C=“E5-!l--llIllIlIIlllIIlIlIlllllIl..ll..l....l.lllllllll‘

TR-68E Appendix & 10%

procedures,
- one ratio of actual to possible accessioility of globals by
segments, and
- the raw count of possible communication paths between
segments via gloobals.
(3) The agistinction
DT (disciplined teams) # Al (individuals) = AT (ad hoc teams)
was observed for nearly all the gprocess aspects, including
- nearly all the raw counts of computer job steps, including
poth the total count and all the subclassification
counts (i.e.y compilations, executions, miscellaneous),
except for identical compilations,
- both "per module®” counts of unigue compiles, the average
and the (worst case) maximum, and
- the amount of revision ana change made to the source code
during development,
tut for none cf the product aspectse.

Specifically, for the study”s digpersion comparisons:
(1) The oistinction
Al (individuals) # AT (ad hoc teams) = DT (disciplined teams)
43s observed for one process aspect, namely
-~ the raw count of miscellaneous computer job steps (i.e.,
auxiliary compilations or executions of something other
than the final proauct),
anc for several product aspects, including
-~ the raw count and several relative percentages of reference
parameters,
-~ a few raw counts of potential segment=-global usage gairs,
~ the raw count of total invocaticns and invocations of
programmer-defined routines, and
~ the raw count of actual segment-global-segment data
opindings in which neither segment could invoke the
other,
(2) The cistinction
AT (ac hoc teams) # DT (disciplined teams) = Al (individuals)
was cbserved for pong of the process aspects and for several

TR=-5¢E8

prcuuct aspectsy, including

- two “"per module" averages of other raw counts, (i.e.,

(3) The distinction
DT (disciplined teams) # Al (individuals) = AT (ad hoc teams)
was observed for one process aspect, namely

anc for several groduct aspects, including

uaSI--Il.II-l-IlI.-llIlI-lIlIl!lIIl-IIII-I.II-.III--I-‘

Appendix & 109

segments and global variables which «ere modified during
execution),

the raw count of executable statements, .

both the raw count and relative percentage of RETURN
statements,

the average number of calls made to programmer-defined
segments which were functions rather than procedures,

the raw count of actual segment-glotal usage pairs in which
the global variable is modified during execution,

the raw count of potential segment-globtal usage pairs in
which the global variable is not accessible across
modules and is modifiec, and

the raw count of potential segment-glotal-segment data
bindinygse.

the (worst case) maximum count of unique compiles for any
one module,

several raw counts and relative percentages of data
variables according to their scope (i.e., global,
parameter, or local),

the raw counts of calls to procedures and to
programmer-defined procedures,

the averaze number of calls to built-in procecdures ger
calling segment, and

the averaze number of tokens per statement.

